AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.079 | 0.095 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.699 |
Model: | OLS | Adj. R-squared: | 0.651 |
Method: | Least Squares | F-statistic: | 14.69 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 3.46e-05 |
Time: | 22:41:16 | Log-Likelihood: | -99.309 |
No. Observations: | 23 | AIC: | 206.6 |
Df Residuals: | 19 | BIC: | 211.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -298.6407 | 215.206 | -1.388 | 0.181 | -749.071 151.790 |
C(dose)[T.1] | 198.2256 | 380.168 | 0.521 | 0.608 | -597.476 993.927 |
expression | 35.9685 | 21.930 | 1.640 | 0.117 | -9.931 81.868 |
expression:C(dose)[T.1] | -15.8166 | 37.454 | -0.422 | 0.678 | -94.209 62.576 |
Omnibus: | 0.168 | Durbin-Watson: | 2.054 |
Prob(Omnibus): | 0.919 | Jarque-Bera (JB): | 0.140 |
Skew: | 0.144 | Prob(JB): | 0.932 |
Kurtosis: | 2.748 | Cond. No. | 1.13e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.696 |
Model: | OLS | Adj. R-squared: | 0.665 |
Method: | Least Squares | F-statistic: | 22.88 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 6.77e-06 |
Time: | 22:41:16 | Log-Likelihood: | -99.416 |
No. Observations: | 23 | AIC: | 204.8 |
Df Residuals: | 20 | BIC: | 208.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -245.4494 | 170.871 | -1.436 | 0.166 | -601.880 110.981 |
C(dose)[T.1] | 37.7680 | 12.057 | 3.132 | 0.005 | 12.617 62.919 |
expression | 30.5463 | 17.409 | 1.755 | 0.095 | -5.767 66.860 |
Omnibus: | 0.746 | Durbin-Watson: | 2.085 |
Prob(Omnibus): | 0.689 | Jarque-Bera (JB): | 0.372 |
Skew: | 0.309 | Prob(JB): | 0.830 |
Kurtosis: | 2.922 | Cond. No. | 427. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:41:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.547 |
Model: | OLS | Adj. R-squared: | 0.525 |
Method: | Least Squares | F-statistic: | 25.32 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 5.55e-05 |
Time: | 22:41:16 | Log-Likelihood: | -104.01 |
No. Observations: | 23 | AIC: | 212.0 |
Df Residuals: | 21 | BIC: | 214.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -630.8283 | 141.280 | -4.465 | 0.000 | -924.636 -337.021 |
expression | 70.6750 | 14.044 | 5.032 | 0.000 | 41.468 99.881 |
Omnibus: | 7.299 | Durbin-Watson: | 2.406 |
Prob(Omnibus): | 0.026 | Jarque-Bera (JB): | 5.050 |
Skew: | 1.038 | Prob(JB): | 0.0801 |
Kurtosis: | 3.982 | Cond. No. | 295. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.206 | 0.658 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.501 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 3.688 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0466 |
Time: | 22:41:16 | Log-Likelihood: | -70.080 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 373.9883 | 292.310 | 1.279 | 0.227 | -269.382 1017.359 |
C(dose)[T.1] | -312.9456 | 370.256 | -0.845 | 0.416 | -1127.873 501.982 |
expression | -34.5885 | 32.956 | -1.050 | 0.316 | -107.123 37.946 |
expression:C(dose)[T.1] | 40.8901 | 41.814 | 0.978 | 0.349 | -51.142 132.923 |
Omnibus: | 2.492 | Durbin-Watson: | 0.964 |
Prob(Omnibus): | 0.288 | Jarque-Bera (JB): | 1.780 |
Skew: | -0.811 | Prob(JB): | 0.411 |
Kurtosis: | 2.535 | Cond. No. | 597. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 5.072 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0253 |
Time: | 22:41:16 | Log-Likelihood: | -70.705 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 148.8695 | 179.811 | 0.828 | 0.424 | -242.906 540.645 |
C(dose)[T.1] | 48.8037 | 15.630 | 3.122 | 0.009 | 14.748 82.859 |
expression | -9.1888 | 20.247 | -0.454 | 0.658 | -53.303 34.925 |
Omnibus: | 3.510 | Durbin-Watson: | 0.849 |
Prob(Omnibus): | 0.173 | Jarque-Bera (JB): | 2.010 |
Skew: | -0.896 | Prob(JB): | 0.366 |
Kurtosis: | 3.032 | Cond. No. | 207. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:41:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.058 |
Method: | Least Squares | F-statistic: | 0.2355 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.636 |
Time: | 22:41:16 | Log-Likelihood: | -75.165 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 205.8430 | 231.377 | 0.890 | 0.390 | -294.016 705.702 |
expression | -12.6893 | 26.148 | -0.485 | 0.636 | -69.179 43.801 |
Omnibus: | 0.481 | Durbin-Watson: | 1.610 |
Prob(Omnibus): | 0.786 | Jarque-Bera (JB): | 0.546 |
Skew: | 0.136 | Prob(JB): | 0.761 |
Kurtosis: | 2.106 | Cond. No. | 206. |