AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.008 0.930 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.23
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000110
Time: 04:23:43 Log-Likelihood: -100.74
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.2711 34.018 1.007 0.326 -36.929 105.472
C(dose)[T.1] 87.2762 47.153 1.851 0.080 -11.416 185.968
expression 6.3099 10.590 0.596 0.558 -15.855 28.474
expression:C(dose)[T.1] -10.6388 14.496 -0.734 0.472 -40.979 19.701
Omnibus: 0.232 Durbin-Watson: 1.789
Prob(Omnibus): 0.890 Jarque-Bera (JB): 0.340
Skew: 0.203 Prob(JB): 0.844
Kurtosis: 2.565 Cond. No. 49.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.82e-05
Time: 04:23:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.2113 23.384 2.233 0.037 3.434 100.989
C(dose)[T.1] 53.2898 8.784 6.066 0.000 34.966 71.614
expression 0.6320 7.147 0.088 0.930 -14.277 15.541
Omnibus: 0.256 Durbin-Watson: 1.869
Prob(Omnibus): 0.880 Jarque-Bera (JB): 0.444
Skew: 0.053 Prob(JB): 0.801
Kurtosis: 2.328 Cond. No. 19.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:23:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07778
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.783
Time: 04:23:43 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.2606 38.179 1.814 0.084 -10.137 148.658
expression 3.2724 11.733 0.279 0.783 -21.128 27.673
Omnibus: 3.534 Durbin-Watson: 2.395
Prob(Omnibus): 0.171 Jarque-Bera (JB): 1.656
Skew: 0.314 Prob(JB): 0.437
Kurtosis: 1.845 Cond. No. 18.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.751 0.403 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.543
Model: OLS Adj. R-squared: 0.419
Method: Least Squares F-statistic: 4.361
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0297
Time: 04:23:43 Log-Likelihood: -69.423
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.7353 45.514 2.785 0.018 26.561 226.910
C(dose)[T.1] -63.1438 90.133 -0.701 0.498 -261.526 135.238
expression -19.4561 14.494 -1.342 0.207 -51.358 12.446
expression:C(dose)[T.1] 39.0246 31.936 1.222 0.247 -31.266 109.315
Omnibus: 1.007 Durbin-Watson: 0.949
Prob(Omnibus): 0.604 Jarque-Bera (JB): 0.873
Skew: -0.493 Prob(JB): 0.646
Kurtosis: 2.349 Cond. No. 46.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.481
Model: OLS Adj. R-squared: 0.395
Method: Least Squares F-statistic: 5.566
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0195
Time: 04:23:43 Log-Likelihood: -70.378
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.2320 41.689 2.452 0.030 11.399 193.065
C(dose)[T.1] 45.3364 15.906 2.850 0.015 10.680 79.993
expression -11.4176 13.178 -0.866 0.403 -40.131 17.295
Omnibus: 3.100 Durbin-Watson: 0.837
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.568
Skew: -0.788 Prob(JB): 0.456
Kurtosis: 3.158 Cond. No. 18.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:23:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.130
Model: OLS Adj. R-squared: 0.063
Method: Least Squares F-statistic: 1.943
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.187
Time: 04:23:44 Log-Likelihood: -74.255
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.5848 46.125 3.395 0.005 56.938 256.232
expression -21.9386 15.740 -1.394 0.187 -55.943 12.065
Omnibus: 1.666 Durbin-Watson: 1.669
Prob(Omnibus): 0.435 Jarque-Bera (JB): 1.084
Skew: 0.374 Prob(JB): 0.582
Kurtosis: 1.915 Cond. No. 15.9