AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.382 0.543 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.37
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000102
Time: 04:47:28 Log-Likelihood: -100.65
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.2401 98.836 1.378 0.184 -70.627 343.107
C(dose)[T.1] -23.4446 130.506 -0.180 0.859 -296.597 249.708
expression -11.4815 13.807 -0.832 0.416 -40.380 17.417
expression:C(dose)[T.1] 10.6983 18.745 0.571 0.575 -28.536 49.933
Omnibus: 0.096 Durbin-Watson: 1.797
Prob(Omnibus): 0.953 Jarque-Bera (JB): 0.322
Skew: 0.014 Prob(JB): 0.851
Kurtosis: 2.421 Cond. No. 277.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.04
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.34e-05
Time: 04:47:28 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 94.7718 65.862 1.439 0.166 -42.614 232.158
C(dose)[T.1] 50.8293 9.587 5.302 0.000 30.831 70.827
expression -5.6774 9.180 -0.618 0.543 -24.826 13.472
Omnibus: 0.199 Durbin-Watson: 1.884
Prob(Omnibus): 0.905 Jarque-Bera (JB): 0.400
Skew: 0.109 Prob(JB): 0.819
Kurtosis: 2.391 Cond. No. 108.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:47:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.172
Model: OLS Adj. R-squared: 0.132
Method: Least Squares F-statistic: 4.351
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0494
Time: 04:47:28 Log-Likelihood: -110.94
No. Observations: 23 AIC: 225.9
Df Residuals: 21 BIC: 228.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 261.8152 87.543 2.991 0.007 79.761 443.870
expression -26.2638 12.591 -2.086 0.049 -52.447 -0.080
Omnibus: 1.337 Durbin-Watson: 2.418
Prob(Omnibus): 0.512 Jarque-Bera (JB): 1.146
Skew: 0.501 Prob(JB): 0.564
Kurtosis: 2.564 Cond. No. 94.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.144 0.711 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.312
Method: Least Squares F-statistic: 3.116
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0704
Time: 04:47:28 Log-Likelihood: -70.687
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.9481 162.700 0.307 0.765 -308.152 408.048
C(dose)[T.1] -26.7781 263.425 -0.102 0.921 -606.572 553.016
expression 2.1699 20.143 0.108 0.916 -42.164 46.504
expression:C(dose)[T.1] 9.2944 32.400 0.287 0.780 -62.018 80.606
Omnibus: 2.449 Durbin-Watson: 0.902
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.473
Skew: -0.762 Prob(JB): 0.479
Kurtosis: 2.823 Cond. No. 338.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 5.016
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0261
Time: 04:47:28 Log-Likelihood: -70.743
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 21.0100 122.673 0.171 0.867 -246.272 288.292
C(dose)[T.1] 48.6431 15.713 3.096 0.009 14.407 82.880
expression 5.7621 15.162 0.380 0.711 -27.273 38.797
Omnibus: 2.698 Durbin-Watson: 0.825
Prob(Omnibus): 0.260 Jarque-Bera (JB): 1.744
Skew: -0.825 Prob(JB): 0.418
Kurtosis: 2.734 Cond. No. 130.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:47:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.020
Model: OLS Adj. R-squared: -0.055
Method: Least Squares F-statistic: 0.2702
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.612
Time: 04:47:28 Log-Likelihood: -75.146
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.6955 158.017 0.074 0.942 -329.680 353.071
expression 10.1112 19.452 0.520 0.612 -31.912 52.134
Omnibus: 0.167 Durbin-Watson: 1.667
Prob(Omnibus): 0.920 Jarque-Bera (JB): 0.375
Skew: 0.036 Prob(JB): 0.829
Kurtosis: 2.229 Cond. No. 130.