AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.049 | 0.828 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.80 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.000137 |
Time: | 20:56:04 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.8173 | 55.908 | 1.267 | 0.221 | -46.199 187.833 |
C(dose)[T.1] | 35.6532 | 86.782 | 0.411 | 0.686 | -145.984 217.290 |
expression | -2.7101 | 9.066 | -0.299 | 0.768 | -21.686 16.266 |
expression:C(dose)[T.1] | 2.8807 | 13.858 | 0.208 | 0.838 | -26.124 31.885 |
Omnibus: | 0.340 | Durbin-Watson: | 1.882 |
Prob(Omnibus): | 0.844 | Jarque-Bera (JB): | 0.494 |
Skew: | 0.036 | Prob(JB): | 0.781 |
Kurtosis: | 2.286 | Cond. No. | 156. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 2.77e-05 |
Time: | 20:56:04 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 63.2608 | 41.448 | 1.526 | 0.143 | -23.199 149.721 |
C(dose)[T.1] | 53.5948 | 8.837 | 6.065 | 0.000 | 35.162 72.028 |
expression | -1.4771 | 6.691 | -0.221 | 0.828 | -15.434 12.479 |
Omnibus: | 0.371 | Durbin-Watson: | 1.884 |
Prob(Omnibus): | 0.831 | Jarque-Bera (JB): | 0.512 |
Skew: | 0.043 | Prob(JB): | 0.774 |
Kurtosis: | 2.274 | Cond. No. | 60.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 20:56:04 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.1267 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.725 |
Time: | 20:56:04 | Log-Likelihood: | -113.04 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.6045 | 68.126 | 0.816 | 0.424 | -86.072 197.281 |
expression | 3.8817 | 10.906 | 0.356 | 0.725 | -18.798 26.561 |
Omnibus: | 3.008 | Durbin-Watson: | 2.408 |
Prob(Omnibus): | 0.222 | Jarque-Bera (JB): | 1.503 |
Skew: | 0.285 | Prob(JB): | 0.472 |
Kurtosis: | 1.885 | Cond. No. | 60.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.969 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.521 |
Model: | OLS | Adj. R-squared: | 0.390 |
Method: | Least Squares | F-statistic: | 3.986 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0380 |
Time: | 20:56:04 | Log-Likelihood: | -69.782 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 11 | BIC: | 150.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.4247 | 76.715 | 1.583 | 0.142 | -47.424 290.273 |
C(dose)[T.1] | -138.3963 | 146.757 | -0.943 | 0.366 | -461.407 184.614 |
expression | -9.5852 | 13.472 | -0.711 | 0.492 | -39.238 20.067 |
expression:C(dose)[T.1] | 32.8900 | 25.583 | 1.286 | 0.225 | -23.417 89.197 |
Omnibus: | 2.408 | Durbin-Watson: | 1.270 |
Prob(Omnibus): | 0.300 | Jarque-Bera (JB): | 1.574 |
Skew: | -0.779 | Prob(JB): | 0.455 |
Kurtosis: | 2.697 | Cond. No. | 138. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.886 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.0280 |
Time: | 20:56:04 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.0410 | 67.239 | 1.042 | 0.318 | -76.460 216.542 |
C(dose)[T.1] | 49.2425 | 15.782 | 3.120 | 0.009 | 14.857 83.628 |
expression | -0.4638 | 11.760 | -0.039 | 0.969 | -26.087 25.160 |
Omnibus: | 2.717 | Durbin-Watson: | 0.814 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.867 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.624 | Cond. No. | 50.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 20:56:04 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.002 |
Model: | OLS | Adj. R-squared: | -0.075 |
Method: | Least Squares | F-statistic: | 0.02205 |
Date: | Mon, 27 Jan 2025 | Prob (F-statistic): | 0.884 |
Time: | 20:56:04 | Log-Likelihood: | -75.287 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 80.8608 | 86.827 | 0.931 | 0.369 | -106.718 268.439 |
expression | 2.2521 | 15.165 | 0.149 | 0.884 | -30.510 35.014 |
Omnibus: | 0.493 | Durbin-Watson: | 1.637 |
Prob(Omnibus): | 0.782 | Jarque-Bera (JB): | 0.537 |
Skew: | 0.003 | Prob(JB): | 0.765 |
Kurtosis: | 2.073 | Cond. No. | 50.4 |