AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.096 | 0.760 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.48e-05 |
Time: | 03:42:03 | Log-Likelihood: | -99.878 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.8212 | 165.703 | -0.252 | 0.803 | -388.641 304.998 |
C(dose)[T.1] | 429.6015 | 270.158 | 1.590 | 0.128 | -135.847 995.050 |
expression | 11.2746 | 19.442 | 0.580 | 0.569 | -29.419 51.968 |
expression:C(dose)[T.1] | -45.7362 | 32.649 | -1.401 | 0.177 | -114.071 22.598 |
Omnibus: | 0.085 | Durbin-Watson: | 1.914 |
Prob(Omnibus): | 0.958 | Jarque-Bera (JB): | 0.310 |
Skew: | 0.028 | Prob(JB): | 0.857 |
Kurtosis: | 2.434 | Cond. No. | 651. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.70e-05 |
Time: | 03:42:03 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 96.3226 | 136.331 | 0.707 | 0.488 | -188.058 380.703 |
C(dose)[T.1] | 51.4308 | 10.703 | 4.805 | 0.000 | 29.105 73.757 |
expression | -4.9445 | 15.990 | -0.309 | 0.760 | -38.300 28.411 |
Omnibus: | 0.417 | Durbin-Watson: | 1.961 |
Prob(Omnibus): | 0.812 | Jarque-Bera (JB): | 0.542 |
Skew: | 0.090 | Prob(JB): | 0.763 |
Kurtosis: | 2.270 | Cond. No. | 265. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:42:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.247 |
Model: | OLS | Adj. R-squared: | 0.212 |
Method: | Least Squares | F-statistic: | 6.906 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0157 |
Time: | 03:42:03 | Log-Likelihood: | -109.84 |
No. Observations: | 23 | AIC: | 223.7 |
Df Residuals: | 21 | BIC: | 225.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 489.7389 | 156.154 | 3.136 | 0.005 | 164.998 814.479 |
expression | -49.2048 | 18.724 | -2.628 | 0.016 | -88.144 -10.266 |
Omnibus: | 2.760 | Durbin-Watson: | 2.460 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 1.236 |
Skew: | 0.040 | Prob(JB): | 0.539 |
Kurtosis: | 1.867 | Cond. No. | 211. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.964 | 0.186 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.548 |
Model: | OLS | Adj. R-squared: | 0.424 |
Method: | Least Squares | F-statistic: | 4.438 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0282 |
Time: | 03:42:03 | Log-Likelihood: | -69.351 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -460.8728 | 376.931 | -1.223 | 0.247 | -1290.493 368.747 |
C(dose)[T.1] | 387.4617 | 474.239 | 0.817 | 0.431 | -656.331 1431.254 |
expression | 57.3967 | 40.934 | 1.402 | 0.188 | -32.699 147.492 |
expression:C(dose)[T.1] | -36.9233 | 51.339 | -0.719 | 0.487 | -149.921 76.074 |
Omnibus: | 2.389 | Durbin-Watson: | 0.747 |
Prob(Omnibus): | 0.303 | Jarque-Bera (JB): | 1.810 |
Skew: | -0.789 | Prob(JB): | 0.405 |
Kurtosis: | 2.364 | Cond. No. | 844. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.526 |
Model: | OLS | Adj. R-squared: | 0.447 |
Method: | Least Squares | F-statistic: | 6.667 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0113 |
Time: | 03:42:03 | Log-Likelihood: | -69.696 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 12 | BIC: | 147.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -244.8167 | 223.036 | -1.098 | 0.294 | -730.770 241.136 |
C(dose)[T.1] | 46.5604 | 14.711 | 3.165 | 0.008 | 14.507 78.614 |
expression | 33.9235 | 24.204 | 1.402 | 0.186 | -18.812 86.659 |
Omnibus: | 2.765 | Durbin-Watson: | 0.676 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 2.093 |
Skew: | -0.852 | Prob(JB): | 0.351 |
Kurtosis: | 2.334 | Cond. No. | 287. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:42:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.131 |
Model: | OLS | Adj. R-squared: | 0.064 |
Method: | Least Squares | F-statistic: | 1.958 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.185 |
Time: | 03:42:03 | Log-Likelihood: | -74.248 |
No. Observations: | 15 | AIC: | 152.5 |
Df Residuals: | 13 | BIC: | 153.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -310.5317 | 288.994 | -1.075 | 0.302 | -934.866 313.803 |
expression | 43.7168 | 31.240 | 1.399 | 0.185 | -23.773 111.207 |
Omnibus: | 3.044 | Durbin-Watson: | 1.654 |
Prob(Omnibus): | 0.218 | Jarque-Bera (JB): | 1.294 |
Skew: | 0.300 | Prob(JB): | 0.524 |
Kurtosis: | 1.692 | Cond. No. | 286. |