AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.022 0.884 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.80
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000136
Time: 04:49:06 Log-Likelihood: -101.01
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.7711 189.055 0.290 0.775 -340.926 450.468
C(dose)[T.1] -48.5718 382.373 -0.127 0.900 -848.887 751.744
expression -0.0636 21.345 -0.003 0.998 -44.738 44.611
expression:C(dose)[T.1] 11.9560 44.454 0.269 0.791 -81.086 104.998
Omnibus: 0.459 Durbin-Watson: 1.885
Prob(Omnibus): 0.795 Jarque-Bera (JB): 0.576
Skew: 0.151 Prob(JB): 0.750
Kurtosis: 2.286 Cond. No. 875.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 04:49:06 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.3696 161.971 0.188 0.853 -307.495 368.234
C(dose)[T.1] 54.2273 10.647 5.093 0.000 32.018 76.437
expression 2.6929 18.284 0.147 0.884 -35.446 40.832
Omnibus: 0.389 Durbin-Watson: 1.859
Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.522
Skew: 0.046 Prob(JB): 0.770
Kurtosis: 2.268 Cond. No. 327.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:49:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.195
Model: OLS Adj. R-squared: 0.156
Method: Least Squares F-statistic: 5.079
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0350
Time: 04:49:06 Log-Likelihood: -110.61
No. Observations: 23 AIC: 225.2
Df Residuals: 21 BIC: 227.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 515.9309 193.671 2.664 0.015 113.169 918.692
expression -50.1719 22.263 -2.254 0.035 -96.470 -3.873
Omnibus: 3.017 Durbin-Watson: 2.215
Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.321
Skew: 0.118 Prob(JB): 0.517
Kurtosis: 1.850 Cond. No. 264.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.688 0.218 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.517
Model: OLS Adj. R-squared: 0.385
Method: Least Squares F-statistic: 3.921
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0397
Time: 04:49:06 Log-Likelihood: -69.845
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 410.5492 319.470 1.285 0.225 -292.601 1113.699
C(dose)[T.1] 28.4238 605.406 0.047 0.963 -1304.066 1360.914
expression -35.4948 33.028 -1.075 0.306 -108.189 37.199
expression:C(dose)[T.1] 1.9243 62.912 0.031 0.976 -136.544 140.392
Omnibus: 2.028 Durbin-Watson: 0.852
Prob(Omnibus): 0.363 Jarque-Bera (JB): 1.414
Skew: -0.722 Prob(JB): 0.493
Kurtosis: 2.579 Cond. No. 932.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.517
Model: OLS Adj. R-squared: 0.436
Method: Least Squares F-statistic: 6.416
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0127
Time: 04:49:06 Log-Likelihood: -69.846
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 405.4223 260.401 1.557 0.145 -161.944 972.788
C(dose)[T.1] 46.9354 14.840 3.163 0.008 14.602 79.269
expression -34.9645 26.915 -1.299 0.218 -93.607 23.678
Omnibus: 1.990 Durbin-Watson: 0.847
Prob(Omnibus): 0.370 Jarque-Bera (JB): 1.392
Skew: -0.715 Prob(JB): 0.499
Kurtosis: 2.574 Cond. No. 345.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:49:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.114
Model: OLS Adj. R-squared: 0.046
Method: Least Squares F-statistic: 1.671
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.219
Time: 04:49:06 Log-Likelihood: -74.393
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 526.6212 335.090 1.572 0.140 -197.297 1250.539
expression -44.9483 34.774 -1.293 0.219 -120.073 30.176
Omnibus: 1.274 Durbin-Watson: 1.777
Prob(Omnibus): 0.529 Jarque-Bera (JB): 0.900
Skew: 0.294 Prob(JB): 0.638
Kurtosis: 1.954 Cond. No. 341.