AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.110 0.744 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.62e-05
Time: 04:51:03 Log-Likelihood: -100.29
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.5380 39.894 2.420 0.026 13.039 180.037
C(dose)[T.1] -0.9001 49.312 -0.018 0.986 -104.111 102.311
expression -9.9655 9.285 -1.073 0.297 -29.399 9.468
expression:C(dose)[T.1] 13.0422 11.818 1.104 0.284 -11.692 37.777
Omnibus: 0.857 Durbin-Watson: 1.877
Prob(Omnibus): 0.651 Jarque-Bera (JB): 0.805
Skew: 0.225 Prob(JB): 0.669
Kurtosis: 2.201 Cond. No. 67.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.68e-05
Time: 04:51:03 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.3423 25.266 2.467 0.023 9.639 115.045
C(dose)[T.1] 52.6144 9.013 5.837 0.000 33.813 71.416
expression -1.9150 5.775 -0.332 0.744 -13.962 10.132
Omnibus: 0.097 Durbin-Watson: 1.881
Prob(Omnibus): 0.953 Jarque-Bera (JB): 0.321
Skew: 0.030 Prob(JB): 0.852
Kurtosis: 2.424 Cond. No. 25.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:51:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.056
Model: OLS Adj. R-squared: 0.011
Method: Least Squares F-statistic: 1.253
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.276
Time: 04:51:03 Log-Likelihood: -112.44
No. Observations: 23 AIC: 228.9
Df Residuals: 21 BIC: 231.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.6607 37.239 3.240 0.004 43.218 198.104
expression -10.0669 8.992 -1.119 0.276 -28.768 8.634
Omnibus: 3.812 Durbin-Watson: 2.528
Prob(Omnibus): 0.149 Jarque-Bera (JB): 1.956
Skew: 0.432 Prob(JB): 0.376
Kurtosis: 1.861 Cond. No. 23.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.955 0.348 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.598
Model: OLS Adj. R-squared: 0.488
Method: Least Squares F-statistic: 5.453
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0153
Time: 04:51:03 Log-Likelihood: -68.466
No. Observations: 15 AIC: 144.9
Df Residuals: 11 BIC: 147.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.8210 65.160 0.534 0.604 -108.595 178.237
C(dose)[T.1] 187.2956 85.135 2.200 0.050 -0.084 374.676
expression 6.5703 12.966 0.507 0.622 -21.968 35.108
expression:C(dose)[T.1] -31.0602 18.026 -1.723 0.113 -70.736 8.616
Omnibus: 0.036 Durbin-Watson: 1.045
Prob(Omnibus): 0.982 Jarque-Bera (JB): 0.230
Skew: -0.084 Prob(JB): 0.891
Kurtosis: 2.417 Cond. No. 79.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 5.751
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0177
Time: 04:51:03 Log-Likelihood: -70.259
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.5708 49.485 2.315 0.039 6.753 222.389
C(dose)[T.1] 42.9718 16.433 2.615 0.023 7.168 78.775
expression -9.4990 9.719 -0.977 0.348 -30.674 11.676
Omnibus: 1.539 Durbin-Watson: 0.886
Prob(Omnibus): 0.463 Jarque-Bera (JB): 1.185
Skew: -0.504 Prob(JB): 0.553
Kurtosis: 2.061 Cond. No. 32.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:51:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.198
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 3.219
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0961
Time: 04:51:03 Log-Likelihood: -73.641
No. Observations: 15 AIC: 151.3
Df Residuals: 13 BIC: 152.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 182.9295 50.580 3.617 0.003 73.659 292.200
expression -19.3488 10.785 -1.794 0.096 -42.648 3.951
Omnibus: 0.083 Durbin-Watson: 1.290
Prob(Omnibus): 0.959 Jarque-Bera (JB): 0.228
Skew: -0.142 Prob(JB): 0.892
Kurtosis: 2.466 Cond. No. 27.2