AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.647 | 0.214 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 13.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.45e-05 |
Time: | 04:58:45 | Log-Likelihood: | -100.08 |
No. Observations: | 23 | AIC: | 208.2 |
Df Residuals: | 19 | BIC: | 212.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 138.4360 | 69.091 | 2.004 | 0.060 | -6.173 283.046 |
C(dose)[T.1] | 11.4588 | 117.520 | 0.098 | 0.923 | -234.514 257.431 |
expression | -12.3000 | 10.052 | -1.224 | 0.236 | -33.339 8.739 |
expression:C(dose)[T.1] | 6.0369 | 17.259 | 0.350 | 0.730 | -30.086 42.160 |
Omnibus: | 0.177 | Durbin-Watson: | 1.755 |
Prob(Omnibus): | 0.915 | Jarque-Bera (JB): | 0.389 |
Skew: | -0.051 | Prob(JB): | 0.823 |
Kurtosis: | 2.371 | Cond. No. | 230. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.643 |
Method: | Least Squares | F-statistic: | 20.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.28e-05 |
Time: | 04:58:45 | Log-Likelihood: | -100.15 |
No. Observations: | 23 | AIC: | 206.3 |
Df Residuals: | 20 | BIC: | 209.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 124.4128 | 55.022 | 2.261 | 0.035 | 9.640 239.186 |
C(dose)[T.1] | 52.4545 | 8.458 | 6.202 | 0.000 | 34.812 70.097 |
expression | -10.2522 | 7.990 | -1.283 | 0.214 | -26.918 6.414 |
Omnibus: | 0.077 | Durbin-Watson: | 1.782 |
Prob(Omnibus): | 0.962 | Jarque-Bera (JB): | 0.282 |
Skew: | -0.083 | Prob(JB): | 0.868 |
Kurtosis: | 2.484 | Cond. No. | 91.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:58:45 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.052 |
Model: | OLS | Adj. R-squared: | 0.007 |
Method: | Least Squares | F-statistic: | 1.155 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.295 |
Time: | 04:58:45 | Log-Likelihood: | -112.49 |
No. Observations: | 23 | AIC: | 229.0 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 176.9288 | 90.712 | 1.950 | 0.065 | -11.717 365.575 |
expression | -14.2819 | 13.287 | -1.075 | 0.295 | -41.914 13.350 |
Omnibus: | 4.398 | Durbin-Watson: | 2.445 |
Prob(Omnibus): | 0.111 | Jarque-Bera (JB): | 1.823 |
Skew: | 0.321 | Prob(JB): | 0.402 |
Kurtosis: | 1.779 | Cond. No. | 90.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.020 | 0.890 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.563 |
Model: | OLS | Adj. R-squared: | 0.444 |
Method: | Least Squares | F-statistic: | 4.721 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0236 |
Time: | 04:58:45 | Log-Likelihood: | -69.094 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 11 | BIC: | 149.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 627.3479 | 346.650 | 1.810 | 0.098 | -135.624 1390.320 |
C(dose)[T.1] | -582.3001 | 374.304 | -1.556 | 0.148 | -1406.138 241.538 |
expression | -76.5295 | 47.357 | -1.616 | 0.134 | -180.763 27.704 |
expression:C(dose)[T.1] | 86.5461 | 51.295 | 1.687 | 0.120 | -26.354 199.446 |
Omnibus: | 2.944 | Durbin-Watson: | 1.272 |
Prob(Omnibus): | 0.229 | Jarque-Bera (JB): | 1.497 |
Skew: | -0.771 | Prob(JB): | 0.473 |
Kurtosis: | 3.122 | Cond. No. | 584. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.903 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0278 |
Time: | 04:58:45 | Log-Likelihood: | -70.821 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.6319 | 143.473 | 0.611 | 0.553 | -224.968 400.232 |
C(dose)[T.1] | 48.7257 | 16.076 | 3.031 | 0.010 | 13.700 83.752 |
expression | -2.7614 | 19.547 | -0.141 | 0.890 | -45.350 39.828 |
Omnibus: | 2.755 | Durbin-Watson: | 0.817 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 1.885 |
Skew: | -0.849 | Prob(JB): | 0.390 |
Kurtosis: | 2.635 | Cond. No. | 135. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:58:45 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.028 |
Model: | OLS | Adj. R-squared: | -0.046 |
Method: | Least Squares | F-statistic: | 0.3796 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.548 |
Time: | 04:58:45 | Log-Likelihood: | -75.084 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 202.3487 | 176.673 | 1.145 | 0.273 | -179.330 584.028 |
expression | -15.0415 | 24.412 | -0.616 | 0.548 | -67.781 37.698 |
Omnibus: | 1.466 | Durbin-Watson: | 1.543 |
Prob(Omnibus): | 0.480 | Jarque-Bera (JB): | 0.887 |
Skew: | 0.198 | Prob(JB): | 0.642 |
Kurtosis: | 1.877 | Cond. No. | 130. |