AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.072 0.791 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000135
Time: 05:01:06 Log-Likelihood: -101.00
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.3897 172.649 -0.020 0.985 -364.748 357.969
C(dose)[T.1] 107.8403 259.524 0.416 0.682 -435.350 651.031
expression 6.2785 18.808 0.334 0.742 -33.086 45.643
expression:C(dose)[T.1] -5.9329 28.661 -0.207 0.838 -65.921 54.055
Omnibus: 0.347 Durbin-Watson: 1.975
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.497
Skew: -0.006 Prob(JB): 0.780
Kurtosis: 2.280 Cond. No. 669.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.73e-05
Time: 05:01:06 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.0472 127.184 0.158 0.876 -245.254 285.348
C(dose)[T.1] 54.1541 9.266 5.844 0.000 34.825 73.483
expression 3.7238 13.848 0.269 0.791 -25.163 32.610
Omnibus: 0.145 Durbin-Watson: 1.931
Prob(Omnibus): 0.930 Jarque-Bera (JB): 0.365
Skew: 0.005 Prob(JB): 0.833
Kurtosis: 2.383 Cond. No. 268.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:01:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.053
Model: OLS Adj. R-squared: 0.008
Method: Least Squares F-statistic: 1.179
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.290
Time: 05:01:06 Log-Likelihood: -112.48
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 286.6031 190.654 1.503 0.148 -109.885 683.091
expression -22.8128 21.009 -1.086 0.290 -66.503 20.877
Omnibus: 3.784 Durbin-Watson: 2.403
Prob(Omnibus): 0.151 Jarque-Bera (JB): 1.667
Skew: 0.293 Prob(JB): 0.435
Kurtosis: 1.818 Cond. No. 249.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.812 0.385 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.345
Method: Least Squares F-statistic: 3.453
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0550
Time: 05:01:06 Log-Likelihood: -70.323
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 272.5040 237.510 1.147 0.276 -250.253 795.261
C(dose)[T.1] -60.1977 639.020 -0.094 0.927 -1466.671 1346.276
expression -19.8712 22.987 -0.864 0.406 -70.464 30.722
expression:C(dose)[T.1] 10.4286 62.887 0.166 0.871 -127.985 148.842
Omnibus: 1.864 Durbin-Watson: 0.872
Prob(Omnibus): 0.394 Jarque-Bera (JB): 1.465
Skew: -0.675 Prob(JB): 0.481
Kurtosis: 2.279 Cond. No. 973.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.621
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0189
Time: 05:01:06 Log-Likelihood: -70.342
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 258.1247 211.967 1.218 0.247 -203.712 719.961
C(dose)[T.1] 45.7368 15.710 2.911 0.013 11.509 79.965
expression -18.4778 20.511 -0.901 0.385 -63.167 26.211
Omnibus: 1.935 Durbin-Watson: 0.866
Prob(Omnibus): 0.380 Jarque-Bera (JB): 1.475
Skew: -0.622 Prob(JB): 0.478
Kurtosis: 2.099 Cond. No. 288.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:01:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.119
Model: OLS Adj. R-squared: 0.051
Method: Least Squares F-statistic: 1.756
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.208
Time: 05:01:06 Log-Likelihood: -74.350
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 431.7083 255.284 1.691 0.115 -119.800 983.216
expression -33.0752 24.960 -1.325 0.208 -86.999 20.849
Omnibus: 2.599 Durbin-Watson: 1.566
Prob(Omnibus): 0.273 Jarque-Bera (JB): 1.159
Skew: 0.242 Prob(JB): 0.560
Kurtosis: 1.727 Cond. No. 276.