AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.023 0.881 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.09
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000118
Time: 05:19:56 Log-Likelihood: -100.83
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.1428 131.068 0.085 0.933 -263.186 285.471
C(dose)[T.1] 170.3520 190.752 0.893 0.383 -228.896 569.600
expression 5.6098 17.054 0.329 0.746 -30.085 41.305
expression:C(dose)[T.1] -14.5988 23.959 -0.609 0.550 -64.746 35.548
Omnibus: 0.714 Durbin-Watson: 1.971
Prob(Omnibus): 0.700 Jarque-Bera (JB): 0.723
Skew: 0.196 Prob(JB): 0.697
Kurtosis: 2.225 Cond. No. 450.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 05:19:56 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.9266 90.703 0.749 0.463 -121.276 257.129
C(dose)[T.1] 54.3198 10.902 4.983 0.000 31.579 77.061
expression -1.7870 11.789 -0.152 0.881 -26.378 22.804
Omnibus: 0.469 Durbin-Watson: 1.897
Prob(Omnibus): 0.791 Jarque-Bera (JB): 0.563
Skew: 0.047 Prob(JB): 0.755
Kurtosis: 2.239 Cond. No. 168.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:19:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.214
Model: OLS Adj. R-squared: 0.177
Method: Least Squares F-statistic: 5.728
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0261
Time: 05:19:56 Log-Likelihood: -110.33
No. Observations: 23 AIC: 224.7
Df Residuals: 21 BIC: 226.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -183.4298 110.132 -1.666 0.111 -412.462 45.602
expression 33.1428 13.847 2.393 0.026 4.345 61.940
Omnibus: 1.801 Durbin-Watson: 2.028
Prob(Omnibus): 0.406 Jarque-Bera (JB): 1.565
Skew: 0.575 Prob(JB): 0.457
Kurtosis: 2.445 Cond. No. 139.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.422 0.528 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.575
Model: OLS Adj. R-squared: 0.460
Method: Least Squares F-statistic: 4.969
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0203
Time: 05:19:56 Log-Likelihood: -68.875
No. Observations: 15 AIC: 145.8
Df Residuals: 11 BIC: 148.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -22.9755 99.270 -0.231 0.821 -241.468 195.517
C(dose)[T.1] 249.3792 122.013 2.044 0.066 -19.169 517.927
expression 14.0808 15.374 0.916 0.379 -19.758 47.920
expression:C(dose)[T.1] -32.1917 19.254 -1.672 0.123 -74.569 10.185
Omnibus: 0.454 Durbin-Watson: 0.997
Prob(Omnibus): 0.797 Jarque-Bera (JB): 0.172
Skew: -0.243 Prob(JB): 0.918
Kurtosis: 2.804 Cond. No. 154.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.268
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0228
Time: 05:19:56 Log-Likelihood: -70.574
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.8144 64.704 1.682 0.118 -32.163 249.792
C(dose)[T.1] 46.8831 15.875 2.953 0.012 12.295 81.471
expression -6.4460 9.923 -0.650 0.528 -28.067 15.175
Omnibus: 1.843 Durbin-Watson: 0.992
Prob(Omnibus): 0.398 Jarque-Bera (JB): 1.300
Skew: -0.687 Prob(JB): 0.522
Kurtosis: 2.562 Cond. No. 54.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:19:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.080
Model: OLS Adj. R-squared: 0.010
Method: Least Squares F-statistic: 1.137
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.306
Time: 05:19:56 Log-Likelihood: -74.671
No. Observations: 15 AIC: 153.3
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 174.7698 76.671 2.279 0.040 9.132 340.408
expression -13.0203 12.209 -1.066 0.306 -39.396 13.356
Omnibus: 0.192 Durbin-Watson: 1.539
Prob(Omnibus): 0.909 Jarque-Bera (JB): 0.139
Skew: -0.166 Prob(JB): 0.933
Kurtosis: 2.665 Cond. No. 50.6