AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.016 0.902 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.81
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000136
Time: 03:42:25 Log-Likelihood: -101.00
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.3933 42.439 1.211 0.241 -37.433 140.219
C(dose)[T.1] 74.1037 72.702 1.019 0.321 -78.063 226.271
expression 0.6031 8.995 0.067 0.947 -18.223 19.429
expression:C(dose)[T.1] -4.4976 15.586 -0.289 0.776 -37.119 28.124
Omnibus: 0.577 Durbin-Watson: 1.882
Prob(Omnibus): 0.750 Jarque-Bera (JB): 0.637
Skew: 0.146 Prob(JB): 0.727
Kurtosis: 2.239 Cond. No. 95.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.81e-05
Time: 03:42:25 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.3847 34.036 1.715 0.102 -12.613 129.382
C(dose)[T.1] 53.2851 8.776 6.071 0.000 34.978 71.592
expression -0.8948 7.175 -0.125 0.902 -15.862 14.073
Omnibus: 0.370 Durbin-Watson: 1.856
Prob(Omnibus): 0.831 Jarque-Bera (JB): 0.514
Skew: 0.080 Prob(JB): 0.773
Kurtosis: 2.285 Cond. No. 38.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:42:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.06320
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.804
Time: 03:42:25 Log-Likelihood: -113.07
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.4740 55.193 1.694 0.105 -21.307 208.255
expression -2.9649 11.794 -0.251 0.804 -27.491 21.562
Omnibus: 2.896 Durbin-Watson: 2.475
Prob(Omnibus): 0.235 Jarque-Bera (JB): 1.490
Skew: 0.293 Prob(JB): 0.475
Kurtosis: 1.899 Cond. No. 37.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.048 0.830 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.481
Model: OLS Adj. R-squared: 0.339
Method: Least Squares F-statistic: 3.394
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0574
Time: 03:42:25 Log-Likelihood: -70.386
No. Observations: 15 AIC: 148.8
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.1613 116.449 0.225 0.826 -230.141 282.463
C(dose)[T.1] 180.0586 168.261 1.070 0.307 -190.281 550.398
expression 8.6611 24.317 0.356 0.728 -44.861 62.183
expression:C(dose)[T.1] -29.4687 37.156 -0.793 0.444 -111.248 52.311
Omnibus: 1.734 Durbin-Watson: 0.981
Prob(Omnibus): 0.420 Jarque-Bera (JB): 1.380
Skew: -0.637 Prob(JB): 0.502
Kurtosis: 2.236 Cond. No. 130.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.928
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0274
Time: 03:42:25 Log-Likelihood: -70.803
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.3028 86.998 0.992 0.341 -103.250 275.856
C(dose)[T.1] 47.3790 17.768 2.667 0.021 8.666 86.092
expression -3.9613 18.100 -0.219 0.830 -43.397 35.474
Omnibus: 2.325 Durbin-Watson: 0.731
Prob(Omnibus): 0.313 Jarque-Bera (JB): 1.707
Skew: -0.783 Prob(JB): 0.426
Kurtosis: 2.470 Cond. No. 53.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:42:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.126
Model: OLS Adj. R-squared: 0.058
Method: Least Squares F-statistic: 1.868
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.195
Time: 03:42:25 Log-Likelihood: -74.293
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 213.5223 88.205 2.421 0.031 22.968 404.077
expression -26.5168 19.401 -1.367 0.195 -68.430 15.396
Omnibus: 0.273 Durbin-Watson: 1.197
Prob(Omnibus): 0.872 Jarque-Bera (JB): 0.439
Skew: -0.082 Prob(JB): 0.803
Kurtosis: 2.178 Cond. No. 44.2