AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.865 0.063 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.713
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 15.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.17e-05
Time: 04:33:36 Log-Likelihood: -98.732
No. Observations: 23 AIC: 205.5
Df Residuals: 19 BIC: 210.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -308.9502 215.096 -1.436 0.167 -759.151 141.250
C(dose)[T.1] 238.1058 262.255 0.908 0.375 -310.801 787.013
expression 42.7080 25.287 1.689 0.108 -10.218 95.634
expression:C(dose)[T.1] -21.7731 30.806 -0.707 0.488 -86.250 42.704
Omnibus: 0.337 Durbin-Watson: 2.286
Prob(Omnibus): 0.845 Jarque-Bera (JB): 0.494
Skew: 0.196 Prob(JB): 0.781
Kurtosis: 2.399 Cond. No. 781.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.676
Method: Least Squares F-statistic: 24.00
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.84e-06
Time: 04:33:36 Log-Likelihood: -99.031
No. Observations: 23 AIC: 204.1
Df Residuals: 20 BIC: 207.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -184.2005 121.388 -1.517 0.145 -437.412 69.011
C(dose)[T.1] 52.8355 8.032 6.578 0.000 36.080 69.591
expression 28.0372 14.260 1.966 0.063 -1.710 57.784
Omnibus: 0.553 Durbin-Watson: 2.297
Prob(Omnibus): 0.758 Jarque-Bera (JB): 0.638
Skew: 0.291 Prob(JB): 0.727
Kurtosis: 2.428 Cond. No. 262.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:33:36 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.070
Model: OLS Adj. R-squared: 0.025
Method: Least Squares F-statistic: 1.572
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.224
Time: 04:33:36 Log-Likelihood: -112.27
No. Observations: 23 AIC: 228.5
Df Residuals: 21 BIC: 230.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -184.2925 210.698 -0.875 0.392 -622.462 253.877
expression 31.0168 24.740 1.254 0.224 -20.433 82.466
Omnibus: 1.699 Durbin-Watson: 2.851
Prob(Omnibus): 0.428 Jarque-Bera (JB): 1.355
Skew: 0.417 Prob(JB): 0.508
Kurtosis: 2.153 Cond. No. 261.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.022 0.181 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.539
Model: OLS Adj. R-squared: 0.413
Method: Least Squares F-statistic: 4.280
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0313
Time: 04:33:36 Log-Likelihood: -69.499
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 348.3128 250.254 1.392 0.191 -202.493 899.119
C(dose)[T.1] -99.6676 287.360 -0.347 0.735 -732.142 532.807
expression -31.1356 27.714 -1.123 0.285 -92.133 29.862
expression:C(dose)[T.1] 15.9213 32.118 0.496 0.630 -54.770 86.613
Omnibus: 1.287 Durbin-Watson: 0.861
Prob(Omnibus): 0.526 Jarque-Bera (JB): 0.905
Skew: -0.296 Prob(JB): 0.636
Kurtosis: 1.952 Cond. No. 508.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.528
Model: OLS Adj. R-squared: 0.450
Method: Least Squares F-statistic: 6.719
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0110
Time: 04:33:36 Log-Likelihood: -69.665
No. Observations: 15 AIC: 145.3
Df Residuals: 12 BIC: 147.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 241.3739 122.790 1.966 0.073 -26.163 508.911
C(dose)[T.1] 42.5649 15.289 2.784 0.017 9.252 75.878
expression -19.2816 13.560 -1.422 0.181 -48.826 10.263
Omnibus: 1.465 Durbin-Watson: 0.864
Prob(Omnibus): 0.481 Jarque-Bera (JB): 0.899
Skew: -0.219 Prob(JB): 0.638
Kurtosis: 1.883 Cond. No. 152.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:33:36 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.224
Model: OLS Adj. R-squared: 0.164
Method: Least Squares F-statistic: 3.743
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0751
Time: 04:33:36 Log-Likelihood: -73.402
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 365.8433 140.960 2.595 0.022 61.317 670.370
expression -30.7965 15.917 -1.935 0.075 -65.184 3.591
Omnibus: 1.604 Durbin-Watson: 1.616
Prob(Omnibus): 0.448 Jarque-Bera (JB): 1.243
Skew: 0.640 Prob(JB): 0.537
Kurtosis: 2.407 Cond. No. 141.