AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.001 | 0.974 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.741 |
Model: | OLS | Adj. R-squared: | 0.700 |
Method: | Least Squares | F-statistic: | 18.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.55e-06 |
Time: | 05:14:20 | Log-Likelihood: | -97.586 |
No. Observations: | 23 | AIC: | 203.2 |
Df Residuals: | 19 | BIC: | 207.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -81.0264 | 85.741 | -0.945 | 0.357 | -260.484 98.432 |
C(dose)[T.1] | 425.6032 | 143.969 | 2.956 | 0.008 | 124.273 726.933 |
expression | 17.9603 | 11.365 | 1.580 | 0.131 | -5.827 41.747 |
expression:C(dose)[T.1] | -49.1673 | 18.986 | -2.590 | 0.018 | -88.906 -9.429 |
Omnibus: | 1.133 | Durbin-Watson: | 2.171 |
Prob(Omnibus): | 0.568 | Jarque-Bera (JB): | 1.069 |
Skew: | 0.421 | Prob(JB): | 0.586 |
Kurtosis: | 2.361 | Cond. No. | 350. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:14:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.6270 | 77.952 | 0.662 | 0.515 | -110.977 214.231 |
C(dose)[T.1] | 53.3146 | 8.796 | 6.061 | 0.000 | 34.967 71.662 |
expression | 0.3428 | 10.321 | 0.033 | 0.974 | -21.187 21.873 |
Omnibus: | 0.311 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.478 |
Skew: | 0.050 | Prob(JB): | 0.787 |
Kurtosis: | 2.301 | Cond. No. | 137. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:14:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.09360 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.763 |
Time: | 05:14:20 | Log-Likelihood: | -113.05 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 40.5883 | 128.097 | 0.317 | 0.754 | -225.804 306.981 |
expression | 5.1750 | 16.915 | 0.306 | 0.763 | -30.001 40.351 |
Omnibus: | 3.762 | Durbin-Watson: | 2.456 |
Prob(Omnibus): | 0.152 | Jarque-Bera (JB): | 1.764 |
Skew: | 0.348 | Prob(JB): | 0.414 |
Kurtosis: | 1.836 | Cond. No. | 137. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.900 | 0.114 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.566 |
Model: | OLS | Adj. R-squared: | 0.447 |
Method: | Least Squares | F-statistic: | 4.777 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0228 |
Time: | 05:14:20 | Log-Likelihood: | -69.044 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 11 | BIC: | 148.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.7627 | 316.870 | 0.589 | 0.568 | -510.664 884.189 |
C(dose)[T.1] | 233.0036 | 364.809 | 0.639 | 0.536 | -569.936 1035.943 |
expression | -15.1813 | 40.288 | -0.377 | 0.713 | -103.856 73.493 |
expression:C(dose)[T.1] | -22.8655 | 46.221 | -0.495 | 0.631 | -124.597 78.866 |
Omnibus: | 2.405 | Durbin-Watson: | 1.394 |
Prob(Omnibus): | 0.300 | Jarque-Bera (JB): | 0.997 |
Skew: | -0.619 | Prob(JB): | 0.608 |
Kurtosis: | 3.245 | Cond. No. | 602. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.556 |
Model: | OLS | Adj. R-squared: | 0.482 |
Method: | Least Squares | F-statistic: | 7.516 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00765 |
Time: | 05:14:20 | Log-Likelihood: | -69.209 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 323.3220 | 150.608 | 2.147 | 0.053 | -4.826 651.470 |
C(dose)[T.1] | 52.6795 | 14.272 | 3.691 | 0.003 | 21.583 83.776 |
expression | -32.5540 | 19.115 | -1.703 | 0.114 | -74.202 9.094 |
Omnibus: | 3.390 | Durbin-Watson: | 1.478 |
Prob(Omnibus): | 0.184 | Jarque-Bera (JB): | 1.618 |
Skew: | -0.790 | Prob(JB): | 0.445 |
Kurtosis: | 3.309 | Cond. No. | 173. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:14:20 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.052 |
Model: | OLS | Adj. R-squared: | -0.021 |
Method: | Least Squares | F-statistic: | 0.7141 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.413 |
Time: | 05:14:21 | Log-Likelihood: | -74.899 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 271.3681 | 210.521 | 1.289 | 0.220 | -183.434 726.171 |
expression | -22.4437 | 26.559 | -0.845 | 0.413 | -79.822 34.934 |
Omnibus: | 0.009 | Durbin-Watson: | 1.878 |
Prob(Omnibus): | 0.996 | Jarque-Bera (JB): | 0.173 |
Skew: | -0.045 | Prob(JB): | 0.917 |
Kurtosis: | 2.481 | Cond. No. | 171. |