AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.170 | 0.292 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 13.74 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 5.31e-05 |
Time: | 22:47:13 | Log-Likelihood: | -99.837 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -9.8521 | 168.954 | -0.058 | 0.954 | -363.477 343.773 |
C(dose)[T.1] | 231.3111 | 187.341 | 1.235 | 0.232 | -160.798 623.420 |
expression | 10.9081 | 28.752 | 0.379 | 0.709 | -49.270 71.086 |
expression:C(dose)[T.1] | -31.8250 | 32.346 | -0.984 | 0.338 | -99.526 35.876 |
Omnibus: | 1.906 | Durbin-Watson: | 2.333 |
Prob(Omnibus): | 0.386 | Jarque-Bera (JB): | 1.576 |
Skew: | 0.606 | Prob(JB): | 0.455 |
Kurtosis: | 2.580 | Cond. No. | 377. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.668 |
Model: | OLS | Adj. R-squared: | 0.635 |
Method: | Least Squares | F-statistic: | 20.16 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.60e-05 |
Time: | 22:47:13 | Log-Likelihood: | -100.41 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 20 | BIC: | 210.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 137.8190 | 77.521 | 1.778 | 0.091 | -23.886 299.524 |
C(dose)[T.1] | 47.2612 | 10.208 | 4.630 | 0.000 | 25.967 68.555 |
expression | -14.2370 | 13.162 | -1.082 | 0.292 | -41.692 13.218 |
Omnibus: | 0.312 | Durbin-Watson: | 1.998 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.453 |
Skew: | 0.217 | Prob(JB): | 0.797 |
Kurtosis: | 2.467 | Cond. No. | 107. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.313 |
Model: | OLS | Adj. R-squared: | 0.280 |
Method: | Least Squares | F-statistic: | 9.574 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00550 |
Time: | 22:47:13 | Log-Likelihood: | -108.79 |
No. Observations: | 23 | AIC: | 221.6 |
Df Residuals: | 21 | BIC: | 223.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 350.4849 | 87.713 | 3.996 | 0.001 | 168.076 532.894 |
expression | -47.7658 | 15.437 | -3.094 | 0.005 | -79.869 -15.662 |
Omnibus: | 2.023 | Durbin-Watson: | 2.495 |
Prob(Omnibus): | 0.364 | Jarque-Bera (JB): | 0.718 |
Skew: | 0.289 | Prob(JB): | 0.698 |
Kurtosis: | 3.645 | Cond. No. | 85.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.929 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.326 |
Method: | Least Squares | F-statistic: | 3.258 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0634 |
Time: | 22:47:13 | Log-Likelihood: | -70.531 |
No. Observations: | 15 | AIC: | 149.1 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -26.1296 | 203.571 | -0.128 | 0.900 | -474.185 421.926 |
C(dose)[T.1] | 220.9782 | 259.095 | 0.853 | 0.412 | -349.286 791.243 |
expression | 13.5899 | 29.521 | 0.460 | 0.654 | -51.384 78.564 |
expression:C(dose)[T.1] | -25.3635 | 38.088 | -0.666 | 0.519 | -109.194 58.467 |
Omnibus: | 1.924 | Durbin-Watson: | 0.742 |
Prob(Omnibus): | 0.382 | Jarque-Bera (JB): | 1.476 |
Skew: | -0.628 | Prob(JB): | 0.478 |
Kurtosis: | 2.113 | Cond. No. | 310. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.892 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0279 |
Time: | 22:47:13 | Log-Likelihood: | -70.828 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 78.7646 | 125.929 | 0.625 | 0.543 | -195.611 353.140 |
C(dose)[T.1] | 48.8007 | 16.332 | 2.988 | 0.011 | 13.216 84.385 |
expression | -1.6466 | 18.216 | -0.090 | 0.929 | -41.335 38.042 |
Omnibus: | 2.695 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.260 | Jarque-Bera (JB): | 1.914 |
Skew: | -0.846 | Prob(JB): | 0.384 |
Kurtosis: | 2.551 | Cond. No. | 111. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:14 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.039 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.5318 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.479 |
Time: | 22:47:14 | Log-Likelihood: | -74.999 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 203.3717 | 150.764 | 1.349 | 0.200 | -122.334 529.078 |
expression | -16.2377 | 22.266 | -0.729 | 0.479 | -64.341 31.866 |
Omnibus: | 0.116 | Durbin-Watson: | 1.560 |
Prob(Omnibus): | 0.944 | Jarque-Bera (JB): | 0.329 |
Skew: | -0.104 | Prob(JB): | 0.848 |
Kurtosis: | 2.305 | Cond. No. | 105. |