AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.013 | 0.910 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 03:51:13 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 83.2574 | 139.025 | 0.599 | 0.556 | -207.725 374.240 |
C(dose)[T.1] | -243.5683 | 377.239 | -0.646 | 0.526 | -1033.138 546.002 |
expression | -3.3517 | 16.025 | -0.209 | 0.837 | -36.893 30.190 |
expression:C(dose)[T.1] | 31.3943 | 40.054 | 0.784 | 0.443 | -52.439 115.228 |
Omnibus: | 0.199 | Durbin-Watson: | 1.837 |
Prob(Omnibus): | 0.905 | Jarque-Bera (JB): | 0.405 |
Skew: | 0.005 | Prob(JB): | 0.817 |
Kurtosis: | 2.350 | Cond. No. | 919. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 03:51:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.7019 | 126.202 | 0.315 | 0.756 | -223.550 302.954 |
C(dose)[T.1] | 51.8560 | 15.573 | 3.330 | 0.003 | 19.372 84.340 |
expression | 1.6738 | 14.545 | 0.115 | 0.910 | -28.666 32.013 |
Omnibus: | 0.270 | Durbin-Watson: | 1.915 |
Prob(Omnibus): | 0.874 | Jarque-Bera (JB): | 0.453 |
Skew: | 0.052 | Prob(JB): | 0.797 |
Kurtosis: | 2.320 | Cond. No. | 267. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:51:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.429 |
Method: | Least Squares | F-statistic: | 17.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000417 |
Time: | 03:51:13 | Log-Likelihood: | -106.13 |
No. Observations: | 23 | AIC: | 216.3 |
Df Residuals: | 21 | BIC: | 218.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -299.3595 | 90.719 | -3.300 | 0.003 | -488.020 -110.699 |
expression | 41.7022 | 9.963 | 4.186 | 0.000 | 20.984 62.421 |
Omnibus: | 1.232 | Durbin-Watson: | 2.512 |
Prob(Omnibus): | 0.540 | Jarque-Bera (JB): | 0.866 |
Skew: | -0.079 | Prob(JB): | 0.649 |
Kurtosis: | 2.063 | Cond. No. | 157. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.932 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.572 |
Model: | OLS | Adj. R-squared: | 0.456 |
Method: | Least Squares | F-statistic: | 4.909 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0210 |
Time: | 03:51:13 | Log-Likelihood: | -68.928 |
No. Observations: | 15 | AIC: | 145.9 |
Df Residuals: | 11 | BIC: | 148.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 145.8417 | 69.201 | 2.108 | 0.059 | -6.468 298.151 |
C(dose)[T.1] | -132.5840 | 103.014 | -1.287 | 0.225 | -359.316 94.148 |
expression | -14.3001 | 12.472 | -1.147 | 0.276 | -41.751 13.150 |
expression:C(dose)[T.1] | 32.5410 | 18.271 | 1.781 | 0.103 | -7.674 72.756 |
Omnibus: | 2.510 | Durbin-Watson: | 1.091 |
Prob(Omnibus): | 0.285 | Jarque-Bera (JB): | 1.170 |
Skew: | -0.680 | Prob(JB): | 0.557 |
Kurtosis: | 3.143 | Cond. No. | 108. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.892 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 03:51:13 | Log-Likelihood: | -70.828 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 62.7022 | 55.515 | 1.129 | 0.281 | -58.254 183.659 |
C(dose)[T.1] | 49.0383 | 15.839 | 3.096 | 0.009 | 14.528 83.549 |
expression | 0.8619 | 9.905 | 0.087 | 0.932 | -20.719 22.443 |
Omnibus: | 2.716 | Durbin-Watson: | 0.828 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.844 |
Skew: | -0.840 | Prob(JB): | 0.398 |
Kurtosis: | 2.647 | Cond. No. | 41.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:51:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.009 |
Model: | OLS | Adj. R-squared: | -0.067 |
Method: | Least Squares | F-statistic: | 0.1193 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.735 |
Time: | 03:51:13 | Log-Likelihood: | -75.232 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.2260 | 71.483 | 0.968 | 0.351 | -85.204 223.656 |
expression | 4.3791 | 12.679 | 0.345 | 0.735 | -23.012 31.770 |
Omnibus: | 0.166 | Durbin-Watson: | 1.632 |
Prob(Omnibus): | 0.921 | Jarque-Bera (JB): | 0.372 |
Skew: | -0.086 | Prob(JB): | 0.830 |
Kurtosis: | 2.248 | Cond. No. | 41.1 |