AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.173 0.682 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.89
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000130
Time: 05:26:29 Log-Likelihood: -100.95
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.3663 63.867 0.663 0.515 -91.309 176.041
C(dose)[T.1] 38.3202 93.788 0.409 0.687 -157.981 234.621
expression 2.3829 12.791 0.186 0.854 -24.389 29.155
expression:C(dose)[T.1] 2.8764 18.517 0.155 0.878 -35.880 41.633
Omnibus: 0.309 Durbin-Watson: 1.948
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.478
Skew: 0.076 Prob(JB): 0.787
Kurtosis: 2.310 Cond. No. 141.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.60e-05
Time: 05:26:29 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.5453 45.232 0.786 0.441 -58.808 129.898
C(dose)[T.1] 52.8213 8.820 5.989 0.000 34.424 71.219
expression 3.7554 9.020 0.416 0.682 -15.061 22.571
Omnibus: 0.260 Durbin-Watson: 1.928
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.447
Skew: 0.091 Prob(JB): 0.800
Kurtosis: 2.342 Cond. No. 54.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:26:29 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.028
Model: OLS Adj. R-squared: -0.018
Method: Least Squares F-statistic: 0.6065
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.445
Time: 05:26:29 Log-Likelihood: -112.78
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.5954 73.694 0.307 0.762 -130.659 175.850
expression 11.3443 14.567 0.779 0.445 -18.950 41.638
Omnibus: 3.859 Durbin-Watson: 2.490
Prob(Omnibus): 0.145 Jarque-Bera (JB): 1.667
Skew: 0.284 Prob(JB): 0.435
Kurtosis: 1.810 Cond. No. 54.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.384 0.547 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.498
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 3.644
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0481
Time: 05:26:29 Log-Likelihood: -70.125
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.9255 99.391 0.794 0.444 -139.833 297.684
C(dose)[T.1] -78.4754 150.140 -0.523 0.612 -408.932 251.981
expression -2.5516 21.912 -0.116 0.909 -50.779 45.676
expression:C(dose)[T.1] 27.5115 32.548 0.845 0.416 -44.126 99.149
Omnibus: 4.897 Durbin-Watson: 0.763
Prob(Omnibus): 0.086 Jarque-Bera (JB): 2.790
Skew: -1.047 Prob(JB): 0.248
Kurtosis: 3.278 Cond. No. 121.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 5.233
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0232
Time: 05:26:30 Log-Likelihood: -70.597
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.7444 73.013 0.312 0.761 -136.338 181.827
C(dose)[T.1] 47.7220 15.676 3.044 0.010 13.568 81.876
expression 9.9170 16.009 0.619 0.547 -24.963 44.797
Omnibus: 3.592 Durbin-Watson: 0.735
Prob(Omnibus): 0.166 Jarque-Bera (JB): 2.252
Skew: -0.947 Prob(JB): 0.324
Kurtosis: 2.877 Cond. No. 45.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:26:30 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.053
Model: OLS Adj. R-squared: -0.020
Method: Least Squares F-statistic: 0.7321
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.408
Time: 05:26:30 Log-Likelihood: -74.889
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 14.2687 93.321 0.153 0.881 -187.339 215.877
expression 17.3166 20.239 0.856 0.408 -26.406 61.040
Omnibus: 0.358 Durbin-Watson: 1.512
Prob(Omnibus): 0.836 Jarque-Bera (JB): 0.491
Skew: -0.169 Prob(JB): 0.782
Kurtosis: 2.181 Cond. No. 45.5