AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.062 | 0.806 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.79 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000137 |
Time: | 22:54:32 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 40.1825 | 49.578 | 0.810 | 0.428 | -63.586 143.951 |
C(dose)[T.1] | 66.0498 | 85.662 | 0.771 | 0.450 | -113.243 245.343 |
expression | 2.2713 | 7.965 | 0.285 | 0.779 | -14.401 18.943 |
expression:C(dose)[T.1] | -2.0632 | 13.604 | -0.152 | 0.881 | -30.536 26.410 |
Omnibus: | 0.185 | Durbin-Watson: | 1.816 |
Prob(Omnibus): | 0.911 | Jarque-Bera (JB): | 0.395 |
Skew: | 0.052 | Prob(JB): | 0.821 |
Kurtosis: | 2.367 | Cond. No. | 149. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.75e-05 |
Time: | 22:54:32 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 44.5506 | 39.356 | 1.132 | 0.271 | -37.545 126.646 |
C(dose)[T.1] | 53.1303 | 8.796 | 6.040 | 0.000 | 34.782 71.478 |
expression | 1.5640 | 6.297 | 0.248 | 0.806 | -11.572 14.700 |
Omnibus: | 0.216 | Durbin-Watson: | 1.849 |
Prob(Omnibus): | 0.898 | Jarque-Bera (JB): | 0.417 |
Skew: | 0.059 | Prob(JB): | 0.812 |
Kurtosis: | 2.351 | Cond. No. | 58.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:54:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.012 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.2524 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.621 |
Time: | 22:54:32 | Log-Likelihood: | -112.97 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 47.4955 | 64.542 | 0.736 | 0.470 | -86.727 181.718 |
expression | 5.1651 | 10.282 | 0.502 | 0.621 | -16.217 26.547 |
Omnibus: | 2.780 | Durbin-Watson: | 2.360 |
Prob(Omnibus): | 0.249 | Jarque-Bera (JB): | 1.473 |
Skew: | 0.299 | Prob(JB): | 0.479 |
Kurtosis: | 1.913 | Cond. No. | 57.9 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.467 | 0.142 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.571 |
Model: | OLS | Adj. R-squared: | 0.454 |
Method: | Least Squares | F-statistic: | 4.877 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0215 |
Time: | 22:54:32 | Log-Likelihood: | -68.956 |
No. Observations: | 15 | AIC: | 145.9 |
Df Residuals: | 11 | BIC: | 148.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 268.4531 | 114.189 | 2.351 | 0.038 | 17.126 519.780 |
C(dose)[T.1] | -162.5945 | 255.300 | -0.637 | 0.537 | -724.506 399.317 |
expression | -30.5159 | 17.259 | -1.768 | 0.105 | -68.503 7.472 |
expression:C(dose)[T.1] | 32.1064 | 37.863 | 0.848 | 0.415 | -51.229 115.442 |
Omnibus: | 3.832 | Durbin-Watson: | 1.136 |
Prob(Omnibus): | 0.147 | Jarque-Bera (JB): | 1.939 |
Skew: | -0.867 | Prob(JB): | 0.379 |
Kurtosis: | 3.310 | Cond. No. | 289. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.543 |
Model: | OLS | Adj. R-squared: | 0.467 |
Method: | Least Squares | F-statistic: | 7.123 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00914 |
Time: | 22:54:32 | Log-Likelihood: | -69.431 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 12 | BIC: | 147.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.5058 | 100.552 | 2.233 | 0.045 | 5.423 443.589 |
C(dose)[T.1] | 53.5282 | 14.598 | 3.667 | 0.003 | 21.722 85.334 |
expression | -23.8446 | 15.181 | -1.571 | 0.142 | -56.921 9.232 |
Omnibus: | 11.346 | Durbin-Watson: | 0.834 |
Prob(Omnibus): | 0.003 | Jarque-Bera (JB): | 7.513 |
Skew: | -1.398 | Prob(JB): | 0.0234 |
Kurtosis: | 5.051 | Cond. No. | 96.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:54:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.030 |
Model: | OLS | Adj. R-squared: | -0.044 |
Method: | Least Squares | F-statistic: | 0.4084 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.534 |
Time: | 22:54:32 | Log-Likelihood: | -75.068 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 182.7558 | 139.773 | 1.308 | 0.214 | -119.206 484.718 |
expression | -13.3279 | 20.857 | -0.639 | 0.534 | -58.386 31.730 |
Omnibus: | 2.665 | Durbin-Watson: | 1.770 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.177 |
Skew: | 0.249 | Prob(JB): | 0.555 |
Kurtosis: | 1.721 | Cond. No. | 95.7 |