AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.240 0.630 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000109
Time: 04:58:56 Log-Likelihood: -100.73
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.9258 59.878 1.635 0.118 -27.401 223.252
C(dose)[T.1] 13.8533 70.403 0.197 0.846 -133.502 161.208
expression -12.3474 16.823 -0.734 0.472 -47.558 22.863
expression:C(dose)[T.1] 11.1576 19.699 0.566 0.578 -30.073 52.388
Omnibus: 0.126 Durbin-Watson: 1.715
Prob(Omnibus): 0.939 Jarque-Bera (JB): 0.345
Skew: -0.054 Prob(JB): 0.841
Kurtosis: 2.409 Cond. No. 88.1

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.52e-05
Time: 04:58:56 Log-Likelihood: -100.93
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.1153 31.051 2.226 0.038 4.345 133.886
C(dose)[T.1] 53.4117 8.719 6.126 0.000 35.224 71.600
expression -4.2103 8.603 -0.489 0.630 -22.156 13.735
Omnibus: 0.022 Durbin-Watson: 1.841
Prob(Omnibus): 0.989 Jarque-Bera (JB): 0.165
Skew: -0.063 Prob(JB): 0.921
Kurtosis: 2.604 Cond. No. 27.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:58:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05338
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.820
Time: 04:58:56 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.3909 51.038 1.791 0.088 -14.748 197.530
expression -3.2891 14.236 -0.231 0.820 -32.895 26.317
Omnibus: 3.581 Durbin-Watson: 2.466
Prob(Omnibus): 0.167 Jarque-Bera (JB): 1.613
Skew: 0.283 Prob(JB): 0.446
Kurtosis: 1.832 Cond. No. 27.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.365 0.557 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.330
Method: Least Squares F-statistic: 3.303
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0613
Time: 04:58:56 Log-Likelihood: -70.483
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.0521 86.030 0.779 0.452 -122.298 256.403
C(dose)[T.1] 0.6690 109.883 0.006 0.995 -241.181 242.520
expression 0.0926 20.976 0.004 0.997 -46.074 46.260
expression:C(dose)[T.1] 11.2740 26.190 0.430 0.675 -46.370 68.918
Omnibus: 1.729 Durbin-Watson: 0.986
Prob(Omnibus): 0.421 Jarque-Bera (JB): 1.374
Skew: -0.644 Prob(JB): 0.503
Kurtosis: 2.266 Cond. No. 87.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.465
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 5.216
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0234
Time: 04:58:56 Log-Likelihood: -70.608
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.6695 50.556 0.745 0.471 -72.483 147.822
C(dose)[T.1] 47.4442 15.775 3.008 0.011 13.074 81.815
expression 7.3242 12.126 0.604 0.557 -19.097 33.745
Omnibus: 2.080 Durbin-Watson: 0.869
Prob(Omnibus): 0.353 Jarque-Bera (JB): 1.600
Skew: -0.729 Prob(JB): 0.449
Kurtosis: 2.341 Cond. No. 29.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:58:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.062
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.8560
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.372
Time: 04:58:56 Log-Likelihood: -74.822
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.8639 64.314 0.542 0.597 -104.079 173.807
expression 14.0316 15.166 0.925 0.372 -18.733 46.796
Omnibus: 0.173 Durbin-Watson: 1.610
Prob(Omnibus): 0.917 Jarque-Bera (JB): 0.378
Skew: 0.069 Prob(JB): 0.828
Kurtosis: 2.234 Cond. No. 29.2