AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.889 0.357 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.73e-05
Time: 05:09:47 Log-Likelihood: -100.30
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.3595 57.269 2.014 0.058 -4.505 235.224
C(dose)[T.1] 6.7978 69.243 0.098 0.923 -138.129 151.724
expression -15.1181 14.080 -1.074 0.296 -44.587 14.351
expression:C(dose)[T.1] 11.3428 17.226 0.658 0.518 -24.711 47.397
Omnibus: 0.238 Durbin-Watson: 1.524
Prob(Omnibus): 0.888 Jarque-Bera (JB): 0.432
Skew: -0.007 Prob(JB): 0.806
Kurtosis: 2.329 Cond. No. 94.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 19.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.83e-05
Time: 05:09:47 Log-Likelihood: -100.56
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.7073 32.883 2.576 0.018 16.115 153.299
C(dose)[T.1] 52.0211 8.694 5.984 0.000 33.886 70.156
expression -7.5401 7.996 -0.943 0.357 -24.219 9.139
Omnibus: 0.192 Durbin-Watson: 1.786
Prob(Omnibus): 0.909 Jarque-Bera (JB): 0.400
Skew: -0.012 Prob(JB): 0.819
Kurtosis: 2.354 Cond. No. 32.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:09:47 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.062
Model: OLS Adj. R-squared: 0.018
Method: Least Squares F-statistic: 1.400
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.250
Time: 05:09:47 Log-Likelihood: -112.36
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 140.0108 51.442 2.722 0.013 33.031 246.990
expression -15.2201 12.865 -1.183 0.250 -41.975 11.535
Omnibus: 4.154 Durbin-Watson: 2.361
Prob(Omnibus): 0.125 Jarque-Bera (JB): 1.839
Skew: 0.350 Prob(JB): 0.399
Kurtosis: 1.805 Cond. No. 31.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.024 0.881 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.309
Method: Least Squares F-statistic: 3.087
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0720
Time: 05:09:47 Log-Likelihood: -70.719
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 57.7006 75.734 0.762 0.462 -108.989 224.390
C(dose)[T.1] 87.5582 106.167 0.825 0.427 -146.113 321.230
expression 2.3463 18.039 0.130 0.899 -37.358 42.050
expression:C(dose)[T.1] -10.8393 28.311 -0.383 0.709 -73.151 51.472
Omnibus: 2.080 Durbin-Watson: 0.817
Prob(Omnibus): 0.353 Jarque-Bera (JB): 1.606
Skew: -0.726 Prob(JB): 0.448
Kurtosis: 2.321 Cond. No. 67.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.906
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 05:09:47 Log-Likelihood: -70.818
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.9465 56.729 1.339 0.205 -47.655 199.548
C(dose)[T.1] 47.6052 18.840 2.527 0.027 6.555 88.655
expression -2.0545 13.399 -0.153 0.881 -31.249 27.140
Omnibus: 2.330 Durbin-Watson: 0.780
Prob(Omnibus): 0.312 Jarque-Bera (JB): 1.684
Skew: -0.783 Prob(JB): 0.431
Kurtosis: 2.508 Cond. No. 30.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:09:47 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.157
Model: OLS Adj. R-squared: 0.092
Method: Least Squares F-statistic: 2.424
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.144
Time: 05:09:47 Log-Likelihood: -74.018
No. Observations: 15 AIC: 152.0
Df Residuals: 13 BIC: 153.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 170.9565 50.513 3.384 0.005 61.829 280.084
expression -20.7049 13.299 -1.557 0.144 -49.436 8.026
Omnibus: 1.142 Durbin-Watson: 1.133
Prob(Omnibus): 0.565 Jarque-Bera (JB): 0.808
Skew: 0.215 Prob(JB): 0.667
Kurtosis: 1.947 Cond. No. 21.9