AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.018 0.895 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.659
Method: Least Squares F-statistic: 15.17
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.80e-05
Time: 22:53:02 Log-Likelihood: -99.046
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 126.3906 58.915 2.145 0.045 3.079 249.702
C(dose)[T.1] -101.5033 81.971 -1.238 0.231 -273.072 70.065
expression -11.9253 9.688 -1.231 0.233 -32.202 8.352
expression:C(dose)[T.1] 26.3216 13.832 1.903 0.072 -2.628 55.271
Omnibus: 3.070 Durbin-Watson: 2.149
Prob(Omnibus): 0.215 Jarque-Bera (JB): 1.555
Skew: -0.145 Prob(JB): 0.460
Kurtosis: 4.240 Cond. No. 157.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.52
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.81e-05
Time: 22:53:03 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.2312 44.922 1.074 0.296 -45.475 141.938
C(dose)[T.1] 53.6445 9.060 5.921 0.000 34.746 72.543
expression 0.9875 7.354 0.134 0.895 -14.352 16.327
Omnibus: 0.237 Durbin-Watson: 1.856
Prob(Omnibus): 0.888 Jarque-Bera (JB): 0.431
Skew: 0.031 Prob(JB): 0.806
Kurtosis: 2.332 Cond. No. 62.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:53:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.035
Model: OLS Adj. R-squared: -0.011
Method: Least Squares F-statistic: 0.7555
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.395
Time: 22:53:03 Log-Likelihood: -112.70
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.8417 68.389 2.030 0.055 -3.381 281.064
expression -10.0143 11.521 -0.869 0.395 -33.974 13.945
Omnibus: 3.294 Durbin-Watson: 2.452
Prob(Omnibus): 0.193 Jarque-Bera (JB): 2.080
Skew: 0.525 Prob(JB): 0.354
Kurtosis: 1.967 Cond. No. 58.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.592 0.456 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.354
Method: Least Squares F-statistic: 3.560
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0510
Time: 22:53:03 Log-Likelihood: -70.211
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.7802 172.456 0.376 0.714 -314.792 444.352
C(dose)[T.1] 190.7843 223.951 0.852 0.412 -302.128 683.697
expression 0.5172 33.607 0.015 0.988 -73.451 74.485
expression:C(dose)[T.1] -26.9292 43.161 -0.624 0.545 -121.926 68.068
Omnibus: 1.171 Durbin-Watson: 0.750
Prob(Omnibus): 0.557 Jarque-Bera (JB): 0.973
Skew: -0.537 Prob(JB): 0.615
Kurtosis: 2.364 Cond. No. 214.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.475
Model: OLS Adj. R-squared: 0.387
Method: Least Squares F-statistic: 5.422
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0210
Time: 22:53:03 Log-Likelihood: -70.472
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 148.3736 105.784 1.403 0.186 -82.110 378.857
C(dose)[T.1] 51.4153 15.633 3.289 0.006 17.353 85.477
expression -15.8092 20.544 -0.770 0.456 -60.570 28.952
Omnibus: 1.930 Durbin-Watson: 0.913
Prob(Omnibus): 0.381 Jarque-Bera (JB): 1.466
Skew: -0.706 Prob(JB): 0.480
Kurtosis: 2.408 Cond. No. 74.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:53:04 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01566
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.902
Time: 22:53:04 Log-Likelihood: -75.291
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.0581 139.335 0.797 0.440 -189.956 412.072
expression -3.3477 26.750 -0.125 0.902 -61.137 54.441
Omnibus: 0.523 Durbin-Watson: 1.635
Prob(Omnibus): 0.770 Jarque-Bera (JB): 0.550
Skew: 0.041 Prob(JB): 0.760
Kurtosis: 2.065 Cond. No. 74.1