AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.217 | 0.647 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 12.85 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.10e-05 |
Time: | 03:55:48 | Log-Likelihood: | -100.36 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -119.1691 | 479.659 | -0.248 | 0.806 | -1123.107 884.768 |
C(dose)[T.1] | 730.6579 | 684.362 | 1.068 | 0.299 | -701.729 2163.045 |
expression | 15.2254 | 42.119 | 0.361 | 0.722 | -72.930 103.381 |
expression:C(dose)[T.1] | -59.5166 | 60.119 | -0.990 | 0.335 | -185.346 66.313 |
Omnibus: | 0.134 | Durbin-Watson: | 1.783 |
Prob(Omnibus): | 0.935 | Jarque-Bera (JB): | 0.284 |
Skew: | 0.151 | Prob(JB): | 0.868 |
Kurtosis: | 2.547 | Cond. No. | 2.33e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.54e-05 |
Time: | 03:55:48 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 213.4831 | 342.123 | 0.624 | 0.540 | -500.172 927.139 |
C(dose)[T.1] | 53.2052 | 8.727 | 6.096 | 0.000 | 35.000 71.410 |
expression | -13.9869 | 30.039 | -0.466 | 0.647 | -76.648 48.674 |
Omnibus: | 0.537 | Durbin-Watson: | 1.848 |
Prob(Omnibus): | 0.764 | Jarque-Bera (JB): | 0.594 |
Skew: | -0.029 | Prob(JB): | 0.743 |
Kurtosis: | 2.215 | Cond. No. | 902. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:55:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.008 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.1619 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.691 |
Time: | 03:55:48 | Log-Likelihood: | -113.02 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 306.6072 | 563.909 | 0.544 | 0.592 | -866.105 1479.319 |
expression | -19.9325 | 49.536 | -0.402 | 0.691 | -122.948 83.083 |
Omnibus: | 2.604 | Durbin-Watson: | 2.442 |
Prob(Omnibus): | 0.272 | Jarque-Bera (JB): | 1.315 |
Skew: | 0.209 | Prob(JB): | 0.518 |
Kurtosis: | 1.906 | Cond. No. | 900. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.482 | 0.501 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.524 |
Model: | OLS | Adj. R-squared: | 0.394 |
Method: | Least Squares | F-statistic: | 4.029 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0369 |
Time: | 03:55:48 | Log-Likelihood: | -69.740 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 228.6830 | 962.872 | 0.238 | 0.817 | -1890.583 2347.949 |
C(dose)[T.1] | -1632.3606 | 1512.625 | -1.079 | 0.304 | -4961.626 1696.905 |
expression | -14.0925 | 84.143 | -0.167 | 0.870 | -199.289 171.104 |
expression:C(dose)[T.1] | 146.8808 | 132.141 | 1.112 | 0.290 | -143.961 437.722 |
Omnibus: | 0.822 | Durbin-Watson: | 0.967 |
Prob(Omnibus): | 0.663 | Jarque-Bera (JB): | 0.759 |
Skew: | -0.327 | Prob(JB): | 0.684 |
Kurtosis: | 2.113 | Cond. No. | 2.92e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.322 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0222 |
Time: | 03:55:48 | Log-Likelihood: | -70.538 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -452.7802 | 749.717 | -0.604 | 0.557 | -2086.273 1180.712 |
C(dose)[T.1] | 48.8996 | 15.439 | 3.167 | 0.008 | 15.261 82.538 |
expression | 45.4627 | 65.513 | 0.694 | 0.501 | -97.277 188.203 |
Omnibus: | 1.464 | Durbin-Watson: | 0.837 |
Prob(Omnibus): | 0.481 | Jarque-Bera (JB): | 1.180 |
Skew: | -0.534 | Prob(JB): | 0.554 |
Kurtosis: | 2.135 | Cond. No. | 1.12e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:55:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.3608 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.558 |
Time: | 03:55:48 | Log-Likelihood: | -75.095 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -492.5026 | 975.863 | -0.505 | 0.622 | -2600.727 1615.722 |
expression | 51.2116 | 85.253 | 0.601 | 0.558 | -132.967 235.390 |
Omnibus: | 0.459 | Durbin-Watson: | 1.623 |
Prob(Omnibus): | 0.795 | Jarque-Bera (JB): | 0.526 |
Skew: | 0.063 | Prob(JB): | 0.769 |
Kurtosis: | 2.091 | Cond. No. | 1.12e+03 |