AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.756 0.395 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.44
Date: Tue, 03 Dec 2024 Prob (F-statistic): 9.91e-05
Time: 11:42:52 Log-Likelihood: -100.61
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 201.5617 171.822 1.173 0.255 -158.066 561.189
C(dose)[T.1] -33.1094 407.956 -0.081 0.936 -886.971 820.753
expression -15.6855 18.279 -0.858 0.402 -53.943 22.572
expression:C(dose)[T.1] 9.1361 43.780 0.209 0.837 -82.496 100.768
Omnibus: 0.169 Durbin-Watson: 1.910
Prob(Omnibus): 0.919 Jarque-Bera (JB): 0.362
Skew: 0.136 Prob(JB): 0.835
Kurtosis: 2.449 Cond. No. 1.01e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.57
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.96e-05
Time: 11:42:52 Log-Likelihood: -100.64
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 186.6008 152.371 1.225 0.235 -131.239 504.441
C(dose)[T.1] 52.0034 8.744 5.947 0.000 33.763 70.243
expression -14.0929 16.207 -0.870 0.395 -47.901 19.715
Omnibus: 0.117 Durbin-Watson: 1.904
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.307
Skew: 0.121 Prob(JB): 0.858
Kurtosis: 2.488 Cond. No. 336.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:42:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.064
Model: OLS Adj. R-squared: 0.019
Method: Least Squares F-statistic: 1.432
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.245
Time: 11:42:52 Log-Likelihood: -112.35
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 369.5357 242.321 1.525 0.142 -134.399 873.470
expression -30.9999 25.909 -1.197 0.245 -84.880 22.880
Omnibus: 3.404 Durbin-Watson: 2.554
Prob(Omnibus): 0.182 Jarque-Bera (JB): 1.638
Skew: 0.318 Prob(JB): 0.441
Kurtosis: 1.858 Cond. No. 328.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.617 0.228 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.575
Model: OLS Adj. R-squared: 0.460
Method: Least Squares F-statistic: 4.970
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0203
Time: 11:42:52 Log-Likelihood: -68.875
No. Observations: 15 AIC: 145.7
Df Residuals: 11 BIC: 148.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 748.0911 378.732 1.975 0.074 -85.492 1581.675
C(dose)[T.1] -742.3591 625.456 -1.187 0.260 -2118.980 634.261
expression -62.2535 34.625 -1.798 0.100 -138.464 13.957
expression:C(dose)[T.1] 72.5005 57.564 1.259 0.234 -54.197 199.198
Omnibus: 4.231 Durbin-Watson: 1.411
Prob(Omnibus): 0.121 Jarque-Bera (JB): 2.008
Skew: -0.854 Prob(JB): 0.366
Kurtosis: 3.541 Cond. No. 1.19e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 6.351
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0131
Time: 11:42:52 Log-Likelihood: -69.885
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 461.2767 309.925 1.488 0.162 -213.993 1136.546
C(dose)[T.1] 45.1716 15.111 2.989 0.011 12.248 78.095
expression -36.0214 28.329 -1.272 0.228 -97.744 25.701
Omnibus: 4.138 Durbin-Watson: 0.975
Prob(Omnibus): 0.126 Jarque-Bera (JB): 2.459
Skew: -0.991 Prob(JB): 0.292
Kurtosis: 3.056 Cond. No. 462.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:42:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.152
Model: OLS Adj. R-squared: 0.087
Method: Least Squares F-statistic: 2.339
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.150
Time: 11:42:52 Log-Likelihood: -74.059
No. Observations: 15 AIC: 152.1
Df Residuals: 13 BIC: 153.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 678.2633 382.369 1.774 0.099 -147.796 1504.322
expression -53.7603 35.153 -1.529 0.150 -129.703 22.182
Omnibus: 6.716 Durbin-Watson: 1.888
Prob(Omnibus): 0.035 Jarque-Bera (JB): 1.926
Skew: 0.413 Prob(JB): 0.382
Kurtosis: 1.451 Cond. No. 448.