AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.756 | 0.395 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 12.44 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 9.91e-05 |
Time: | 11:42:52 | Log-Likelihood: | -100.61 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 201.5617 | 171.822 | 1.173 | 0.255 | -158.066 561.189 |
C(dose)[T.1] | -33.1094 | 407.956 | -0.081 | 0.936 | -886.971 820.753 |
expression | -15.6855 | 18.279 | -0.858 | 0.402 | -53.943 22.572 |
expression:C(dose)[T.1] | 9.1361 | 43.780 | 0.209 | 0.837 | -82.496 100.768 |
Omnibus: | 0.169 | Durbin-Watson: | 1.910 |
Prob(Omnibus): | 0.919 | Jarque-Bera (JB): | 0.362 |
Skew: | 0.136 | Prob(JB): | 0.835 |
Kurtosis: | 2.449 | Cond. No. | 1.01e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.57 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.96e-05 |
Time: | 11:42:52 | Log-Likelihood: | -100.64 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.6008 | 152.371 | 1.225 | 0.235 | -131.239 504.441 |
C(dose)[T.1] | 52.0034 | 8.744 | 5.947 | 0.000 | 33.763 70.243 |
expression | -14.0929 | 16.207 | -0.870 | 0.395 | -47.901 19.715 |
Omnibus: | 0.117 | Durbin-Watson: | 1.904 |
Prob(Omnibus): | 0.943 | Jarque-Bera (JB): | 0.307 |
Skew: | 0.121 | Prob(JB): | 0.858 |
Kurtosis: | 2.488 | Cond. No. | 336. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:42:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.064 |
Model: | OLS | Adj. R-squared: | 0.019 |
Method: | Least Squares | F-statistic: | 1.432 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.245 |
Time: | 11:42:52 | Log-Likelihood: | -112.35 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 369.5357 | 242.321 | 1.525 | 0.142 | -134.399 873.470 |
expression | -30.9999 | 25.909 | -1.197 | 0.245 | -84.880 22.880 |
Omnibus: | 3.404 | Durbin-Watson: | 2.554 |
Prob(Omnibus): | 0.182 | Jarque-Bera (JB): | 1.638 |
Skew: | 0.318 | Prob(JB): | 0.441 |
Kurtosis: | 1.858 | Cond. No. | 328. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.617 | 0.228 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.575 |
Model: | OLS | Adj. R-squared: | 0.460 |
Method: | Least Squares | F-statistic: | 4.970 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0203 |
Time: | 11:42:52 | Log-Likelihood: | -68.875 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 748.0911 | 378.732 | 1.975 | 0.074 | -85.492 1581.675 |
C(dose)[T.1] | -742.3591 | 625.456 | -1.187 | 0.260 | -2118.980 634.261 |
expression | -62.2535 | 34.625 | -1.798 | 0.100 | -138.464 13.957 |
expression:C(dose)[T.1] | 72.5005 | 57.564 | 1.259 | 0.234 | -54.197 199.198 |
Omnibus: | 4.231 | Durbin-Watson: | 1.411 |
Prob(Omnibus): | 0.121 | Jarque-Bera (JB): | 2.008 |
Skew: | -0.854 | Prob(JB): | 0.366 |
Kurtosis: | 3.541 | Cond. No. | 1.19e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.514 |
Model: | OLS | Adj. R-squared: | 0.433 |
Method: | Least Squares | F-statistic: | 6.351 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0131 |
Time: | 11:42:52 | Log-Likelihood: | -69.885 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 12 | BIC: | 147.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 461.2767 | 309.925 | 1.488 | 0.162 | -213.993 1136.546 |
C(dose)[T.1] | 45.1716 | 15.111 | 2.989 | 0.011 | 12.248 78.095 |
expression | -36.0214 | 28.329 | -1.272 | 0.228 | -97.744 25.701 |
Omnibus: | 4.138 | Durbin-Watson: | 0.975 |
Prob(Omnibus): | 0.126 | Jarque-Bera (JB): | 2.459 |
Skew: | -0.991 | Prob(JB): | 0.292 |
Kurtosis: | 3.056 | Cond. No. | 462. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:42:52 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.152 |
Model: | OLS | Adj. R-squared: | 0.087 |
Method: | Least Squares | F-statistic: | 2.339 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.150 |
Time: | 11:42:52 | Log-Likelihood: | -74.059 |
No. Observations: | 15 | AIC: | 152.1 |
Df Residuals: | 13 | BIC: | 153.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 678.2633 | 382.369 | 1.774 | 0.099 | -147.796 1504.322 |
expression | -53.7603 | 35.153 | -1.529 | 0.150 | -129.703 22.182 |
Omnibus: | 6.716 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.035 | Jarque-Bera (JB): | 1.926 |
Skew: | 0.413 | Prob(JB): | 0.382 |
Kurtosis: | 1.451 | Cond. No. | 448. |