AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.649 0.214 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.48
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.99e-05
Time: 05:20:52 Log-Likelihood: -99.987
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -280.2166 277.331 -1.010 0.325 -860.678 300.245
C(dose)[T.1] 242.0525 359.117 0.674 0.508 -509.588 993.693
expression 39.7938 32.993 1.206 0.243 -29.260 108.848
expression:C(dose)[T.1] -22.3989 42.776 -0.524 0.607 -111.930 67.133
Omnibus: 1.553 Durbin-Watson: 1.889
Prob(Omnibus): 0.460 Jarque-Bera (JB): 1.334
Skew: -0.448 Prob(JB): 0.513
Kurtosis: 2.233 Cond. No. 964.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 20.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.28e-05
Time: 05:20:52 Log-Likelihood: -100.15
No. Observations: 23 AIC: 206.3
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -168.2370 173.345 -0.971 0.343 -529.828 193.354
C(dose)[T.1] 54.0619 8.448 6.399 0.000 36.439 71.685
expression 26.4692 20.615 1.284 0.214 -16.533 69.471
Omnibus: 1.244 Durbin-Watson: 1.824
Prob(Omnibus): 0.537 Jarque-Bera (JB): 1.129
Skew: -0.401 Prob(JB): 0.569
Kurtosis: 2.269 Cond. No. 351.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:20:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.035
Method: Least Squares F-statistic: 0.2538
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.620
Time: 05:20:52 Log-Likelihood: -112.97
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -68.4163 294.119 -0.233 0.818 -680.070 543.237
expression 17.6542 35.042 0.504 0.620 -55.219 90.528
Omnibus: 3.373 Durbin-Watson: 2.518
Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.533
Skew: 0.256 Prob(JB): 0.465
Kurtosis: 1.844 Cond. No. 349.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.883 0.195 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.555
Model: OLS Adj. R-squared: 0.434
Method: Least Squares F-statistic: 4.571
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0259
Time: 05:20:52 Log-Likelihood: -69.229
No. Observations: 15 AIC: 146.5
Df Residuals: 11 BIC: 149.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 504.8635 280.395 1.801 0.099 -112.281 1122.008
C(dose)[T.1] -279.7339 377.218 -0.742 0.474 -1109.986 550.518
expression -55.8838 35.795 -1.561 0.147 -134.668 22.900
expression:C(dose)[T.1] 42.1769 47.914 0.880 0.398 -63.281 147.634
Omnibus: 2.754 Durbin-Watson: 1.470
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.611
Skew: -0.801 Prob(JB): 0.447
Kurtosis: 2.896 Cond. No. 559.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.524
Model: OLS Adj. R-squared: 0.444
Method: Least Squares F-statistic: 6.593
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0117
Time: 05:20:52 Log-Likelihood: -69.740
No. Observations: 15 AIC: 145.5
Df Residuals: 12 BIC: 147.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 320.6071 184.808 1.735 0.108 -82.054 723.268
C(dose)[T.1] 52.0593 14.781 3.522 0.004 19.854 84.265
expression -32.3444 23.570 -1.372 0.195 -83.700 19.011
Omnibus: 2.372 Durbin-Watson: 1.137
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.635
Skew: -0.784 Prob(JB): 0.442
Kurtosis: 2.604 Cond. No. 203.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:20:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.4163
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.530
Time: 05:20:52 Log-Likelihood: -75.064
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 256.1062 251.964 1.016 0.328 -288.229 800.441
expression -20.6278 31.971 -0.645 0.530 -89.697 48.441
Omnibus: 2.178 Durbin-Watson: 1.707
Prob(Omnibus): 0.336 Jarque-Bera (JB): 1.086
Skew: 0.252 Prob(JB): 0.581
Kurtosis: 1.782 Cond. No. 202.