AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.002 0.968 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.595
Method: Least Squares F-statistic: 11.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000139
Time: 04:45:01 Log-Likelihood: -101.03
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.1808 107.354 0.300 0.768 -192.514 256.876
C(dose)[T.1] 81.7123 128.985 0.634 0.534 -188.257 351.682
expression 3.4032 16.558 0.206 0.839 -31.253 38.059
expression:C(dose)[T.1] -4.3871 19.900 -0.220 0.828 -46.037 37.263
Omnibus: 0.403 Durbin-Watson: 1.831
Prob(Omnibus): 0.817 Jarque-Bera (JB): 0.531
Skew: 0.058 Prob(JB): 0.767
Kurtosis: 2.265 Cond. No. 269.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:45:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.8411 58.330 0.889 0.385 -69.834 173.516
C(dose)[T.1] 53.3450 8.772 6.082 0.000 35.048 71.642
expression 0.3657 8.963 0.041 0.968 -18.331 19.062
Omnibus: 0.323 Durbin-Watson: 1.878
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.057 Prob(JB): 0.785
Kurtosis: 2.298 Cond. No. 88.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:45:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.003165
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.956
Time: 04:45:01 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.0841 95.664 0.889 0.384 -113.861 284.029
expression -0.8305 14.761 -0.056 0.956 -31.528 29.867
Omnibus: 3.289 Durbin-Watson: 2.494
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.566
Skew: 0.289 Prob(JB): 0.457
Kurtosis: 1.860 Cond. No. 88.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.898 0.114 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.565
Model: OLS Adj. R-squared: 0.446
Method: Least Squares F-statistic: 4.756
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0231
Time: 04:45:01 Log-Likelihood: -69.062
No. Observations: 15 AIC: 146.1
Df Residuals: 11 BIC: 149.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 321.6559 172.596 1.864 0.089 -58.226 701.538
C(dose)[T.1] -58.9929 241.411 -0.244 0.811 -590.335 472.349
expression -35.4464 24.019 -1.476 0.168 -88.311 17.419
expression:C(dose)[T.1] 15.5548 33.221 0.468 0.649 -57.564 88.673
Omnibus: 2.007 Durbin-Watson: 1.104
Prob(Omnibus): 0.367 Jarque-Bera (JB): 1.513
Skew: -0.722 Prob(JB): 0.469
Kurtosis: 2.420 Cond. No. 330.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.556
Model: OLS Adj. R-squared: 0.482
Method: Least Squares F-statistic: 7.514
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00766
Time: 04:45:01 Log-Likelihood: -69.210
No. Observations: 15 AIC: 144.4
Df Residuals: 12 BIC: 146.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 263.3387 115.534 2.279 0.042 11.612 515.065
C(dose)[T.1] 53.8270 14.385 3.742 0.003 22.484 85.170
expression -27.3154 16.044 -1.702 0.114 -62.273 7.642
Omnibus: 2.208 Durbin-Watson: 0.958
Prob(Omnibus): 0.332 Jarque-Bera (JB): 1.630
Skew: -0.761 Prob(JB): 0.443
Kurtosis: 2.460 Cond. No. 122.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:45:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.5134
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.486
Time: 04:45:01 Log-Likelihood: -75.010
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 209.6104 162.126 1.293 0.219 -140.642 559.862
expression -15.9646 22.281 -0.717 0.486 -64.100 32.171
Omnibus: 1.839 Durbin-Watson: 1.810
Prob(Omnibus): 0.399 Jarque-Bera (JB): 1.005
Skew: 0.241 Prob(JB): 0.605
Kurtosis: 1.827 Cond. No. 121.