AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.480 0.496 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.15
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000114
Time: 04:46:07 Log-Likelihood: -100.79
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.4386 114.262 0.993 0.333 -125.715 352.592
C(dose)[T.1] 44.3449 162.830 0.272 0.788 -296.463 385.153
expression -7.4747 14.399 -0.519 0.610 -37.611 22.662
expression:C(dose)[T.1] 0.8516 20.988 0.041 0.968 -43.077 44.781
Omnibus: 0.080 Durbin-Watson: 1.925
Prob(Omnibus): 0.961 Jarque-Bera (JB): 0.184
Skew: -0.118 Prob(JB): 0.912
Kurtosis: 2.631 Cond. No. 371.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.18
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.24e-05
Time: 04:46:07 Log-Likelihood: -100.79
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.2627 81.136 1.359 0.189 -58.985 279.510
C(dose)[T.1] 50.9402 9.332 5.459 0.000 31.475 70.406
expression -7.0739 10.211 -0.693 0.496 -28.374 14.226
Omnibus: 0.110 Durbin-Watson: 1.917
Prob(Omnibus): 0.947 Jarque-Bera (JB): 0.182
Skew: -0.135 Prob(JB): 0.913
Kurtosis: 2.657 Cond. No. 149.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.147
Model: OLS Adj. R-squared: 0.106
Method: Least Squares F-statistic: 3.609
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0713
Time: 04:46:07 Log-Likelihood: -111.28
No. Observations: 23 AIC: 226.6
Df Residuals: 21 BIC: 228.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 295.0500 113.551 2.598 0.017 58.907 531.193
expression -27.7417 14.604 -1.900 0.071 -58.112 2.629
Omnibus: 7.328 Durbin-Watson: 2.080
Prob(Omnibus): 0.026 Jarque-Bera (JB): 1.891
Skew: 0.031 Prob(JB): 0.388
Kurtosis: 1.597 Cond. No. 135.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.023 0.883 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 3.231
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0647
Time: 04:46:07 Log-Likelihood: -70.561
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 338.5158 633.540 0.534 0.604 -1055.897 1732.928
C(dose)[T.1] -421.8552 761.855 -0.554 0.591 -2098.687 1254.976
expression -32.1666 75.161 -0.428 0.677 -197.596 133.262
expression:C(dose)[T.1] 56.6577 91.287 0.621 0.547 -144.263 257.579
Omnibus: 1.676 Durbin-Watson: 0.865
Prob(Omnibus): 0.433 Jarque-Bera (JB): 1.325
Skew: -0.646 Prob(JB): 0.516
Kurtosis: 2.329 Cond. No. 1.14e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.905
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 04:46:07 Log-Likelihood: -70.819
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 14.8205 350.348 0.042 0.967 -748.522 778.163
C(dose)[T.1] 50.8371 19.145 2.655 0.021 9.124 92.550
expression 6.2423 41.549 0.150 0.883 -84.285 96.770
Omnibus: 2.516 Durbin-Watson: 0.866
Prob(Omnibus): 0.284 Jarque-Bera (JB): 1.781
Skew: -0.814 Prob(JB): 0.411
Kurtosis: 2.555 Cond. No. 376.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.127
Model: OLS Adj. R-squared: 0.059
Method: Least Squares F-statistic: 1.883
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.193
Time: 04:46:07 Log-Likelihood: -74.286
No. Observations: 15 AIC: 152.6
Df Residuals: 13 BIC: 154.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 563.4842 342.508 1.645 0.124 -176.460 1303.428
expression -56.6904 41.313 -1.372 0.193 -145.941 32.560
Omnibus: 0.445 Durbin-Watson: 1.179
Prob(Omnibus): 0.800 Jarque-Bera (JB): 0.517
Skew: -0.004 Prob(JB): 0.772
Kurtosis: 2.090 Cond. No. 303.