AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.168 | 0.156 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.695 |
Model: | OLS | Adj. R-squared: | 0.647 |
Method: | Least Squares | F-statistic: | 14.42 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.90e-05 |
Time: | 22:55:11 | Log-Likelihood: | -99.456 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 19 | BIC: | 211.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.7689 | 100.383 | 0.316 | 0.755 | -178.336 241.874 |
C(dose)[T.1] | -50.7252 | 125.830 | -0.403 | 0.691 | -314.090 212.639 |
expression | 3.0050 | 13.421 | 0.224 | 0.825 | -25.085 31.095 |
expression:C(dose)[T.1] | 14.2916 | 16.942 | 0.844 | 0.409 | -21.169 49.752 |
Omnibus: | 0.208 | Durbin-Watson: | 1.929 |
Prob(Omnibus): | 0.901 | Jarque-Bera (JB): | 0.353 |
Skew: | 0.185 | Prob(JB): | 0.838 |
Kurtosis: | 2.519 | Cond. No. | 311. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 21.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.01e-05 |
Time: | 22:55:12 | Log-Likelihood: | -99.879 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 20 | BIC: | 209.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -35.1955 | 60.996 | -0.577 | 0.570 | -162.431 92.040 |
C(dose)[T.1] | 55.1765 | 8.423 | 6.551 | 0.000 | 37.606 72.747 |
expression | 11.9727 | 8.132 | 1.472 | 0.156 | -4.990 28.935 |
Omnibus: | 0.219 | Durbin-Watson: | 1.644 |
Prob(Omnibus): | 0.896 | Jarque-Bera (JB): | 0.339 |
Skew: | 0.196 | Prob(JB): | 0.844 |
Kurtosis: | 2.553 | Cond. No. | 111. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:55:12 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.08559 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.773 |
Time: | 22:55:12 | Log-Likelihood: | -113.06 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.6087 | 103.167 | 0.481 | 0.636 | -164.939 264.156 |
expression | 4.0721 | 13.919 | 0.293 | 0.773 | -24.874 33.018 |
Omnibus: | 3.575 | Durbin-Watson: | 2.477 |
Prob(Omnibus): | 0.167 | Jarque-Bera (JB): | 1.574 |
Skew: | 0.258 | Prob(JB): | 0.455 |
Kurtosis: | 1.827 | Cond. No. | 108. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.040 | 0.179 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.529 |
Model: | OLS | Adj. R-squared: | 0.400 |
Method: | Least Squares | F-statistic: | 4.118 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0348 |
Time: | 22:55:12 | Log-Likelihood: | -69.654 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 11 | BIC: | 150.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 236.1882 | 147.077 | 1.606 | 0.137 | -87.527 559.903 |
C(dose)[T.1] | 29.5602 | 249.558 | 0.118 | 0.908 | -519.713 578.834 |
expression | -19.7847 | 17.194 | -1.151 | 0.274 | -57.627 18.058 |
expression:C(dose)[T.1] | 1.3692 | 30.230 | 0.045 | 0.965 | -65.167 67.905 |
Omnibus: | 5.064 | Durbin-Watson: | 0.715 |
Prob(Omnibus): | 0.080 | Jarque-Bera (JB): | 2.711 |
Skew: | -1.015 | Prob(JB): | 0.258 |
Kurtosis: | 3.466 | Cond. No. | 342. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.529 |
Model: | OLS | Adj. R-squared: | 0.450 |
Method: | Least Squares | F-statistic: | 6.735 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0109 |
Time: | 22:55:12 | Log-Likelihood: | -69.655 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 12 | BIC: | 147.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 232.4103 | 115.990 | 2.004 | 0.068 | -20.310 485.131 |
C(dose)[T.1] | 40.8388 | 15.683 | 2.604 | 0.023 | 6.667 75.010 |
expression | -19.3417 | 13.541 | -1.428 | 0.179 | -48.845 10.162 |
Omnibus: | 5.245 | Durbin-Watson: | 0.705 |
Prob(Omnibus): | 0.073 | Jarque-Bera (JB): | 2.812 |
Skew: | -1.030 | Prob(JB): | 0.245 |
Kurtosis: | 3.507 | Cond. No. | 135. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:55:12 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.263 |
Model: | OLS | Adj. R-squared: | 0.206 |
Method: | Least Squares | F-statistic: | 4.631 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0508 |
Time: | 22:55:12 | Log-Likelihood: | -73.015 |
No. Observations: | 15 | AIC: | 150.0 |
Df Residuals: | 13 | BIC: | 151.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 363.3654 | 125.627 | 2.892 | 0.013 | 91.965 634.766 |
expression | -32.4963 | 15.100 | -2.152 | 0.051 | -65.119 0.126 |
Omnibus: | 2.347 | Durbin-Watson: | 1.618 |
Prob(Omnibus): | 0.309 | Jarque-Bera (JB): | 1.015 |
Skew: | -0.048 | Prob(JB): | 0.602 |
Kurtosis: | 1.729 | Cond. No. | 122. |