AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.124 | 0.728 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.06 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000120 |
Time: | 05:23:36 | Log-Likelihood: | -100.84 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.8686 | 100.266 | 0.577 | 0.571 | -151.991 267.728 |
C(dose)[T.1] | -18.5328 | 150.965 | -0.123 | 0.904 | -334.506 297.440 |
expression | -0.5035 | 13.767 | -0.037 | 0.971 | -29.317 28.310 |
expression:C(dose)[T.1] | 11.0807 | 22.244 | 0.498 | 0.624 | -35.477 57.638 |
Omnibus: | 0.305 | Durbin-Watson: | 1.796 |
Prob(Omnibus): | 0.859 | Jarque-Bera (JB): | 0.476 |
Skew: | 0.164 | Prob(JB): | 0.788 |
Kurtosis: | 2.376 | Cond. No. | 294. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.67 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.66e-05 |
Time: | 05:23:36 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 27.0159 | 77.353 | 0.349 | 0.731 | -134.340 188.372 |
C(dose)[T.1] | 56.4074 | 12.339 | 4.572 | 0.000 | 30.669 82.146 |
expression | 3.7406 | 10.608 | 0.353 | 0.728 | -18.388 25.869 |
Omnibus: | 0.240 | Durbin-Watson: | 1.820 |
Prob(Omnibus): | 0.887 | Jarque-Bera (JB): | 0.433 |
Skew: | 0.105 | Prob(JB): | 0.805 |
Kurtosis: | 2.362 | Cond. No. | 126. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:23:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.287 |
Model: | OLS | Adj. R-squared: | 0.253 |
Method: | Least Squares | F-statistic: | 8.444 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00845 |
Time: | 05:23:36 | Log-Likelihood: | -109.22 |
No. Observations: | 23 | AIC: | 222.4 |
Df Residuals: | 21 | BIC: | 224.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 289.3330 | 72.393 | 3.997 | 0.001 | 138.783 439.883 |
expression | -30.4808 | 10.490 | -2.906 | 0.008 | -52.295 -8.667 |
Omnibus: | 2.723 | Durbin-Watson: | 2.288 |
Prob(Omnibus): | 0.256 | Jarque-Bera (JB): | 1.225 |
Skew: | -0.005 | Prob(JB): | 0.542 |
Kurtosis: | 1.870 | Cond. No. | 83.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.792 | 0.121 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.731 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 9.972 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00181 |
Time: | 05:23:36 | Log-Likelihood: | -65.448 |
No. Observations: | 15 | AIC: | 138.9 |
Df Residuals: | 11 | BIC: | 141.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 193.0203 | 125.164 | 1.542 | 0.151 | -82.465 468.505 |
C(dose)[T.1] | -364.3369 | 153.598 | -2.372 | 0.037 | -702.405 -26.269 |
expression | -17.3233 | 17.226 | -1.006 | 0.336 | -55.237 20.590 |
expression:C(dose)[T.1] | 57.0919 | 21.136 | 2.701 | 0.021 | 10.571 103.613 |
Omnibus: | 1.626 | Durbin-Watson: | 1.288 |
Prob(Omnibus): | 0.444 | Jarque-Bera (JB): | 0.364 |
Skew: | -0.328 | Prob(JB): | 0.834 |
Kurtosis: | 3.390 | Cond. No. | 284. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.553 |
Model: | OLS | Adj. R-squared: | 0.478 |
Method: | Least Squares | F-statistic: | 7.418 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00800 |
Time: | 05:23:36 | Log-Likelihood: | -69.264 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 12 | BIC: | 146.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -81.8913 | 89.958 | -0.910 | 0.381 | -277.892 114.110 |
C(dose)[T.1] | 49.3907 | 14.177 | 3.484 | 0.005 | 18.502 80.280 |
expression | 20.5962 | 12.326 | 1.671 | 0.121 | -6.259 47.452 |
Omnibus: | 0.118 | Durbin-Watson: | 0.811 |
Prob(Omnibus): | 0.943 | Jarque-Bera (JB): | 0.317 |
Skew: | -0.135 | Prob(JB): | 0.854 |
Kurtosis: | 2.342 | Cond. No. | 94.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:23:36 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.101 |
Model: | OLS | Adj. R-squared: | 0.031 |
Method: | Least Squares | F-statistic: | 1.453 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.250 |
Time: | 05:23:36 | Log-Likelihood: | -74.505 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -52.9985 | 122.056 | -0.434 | 0.671 | -316.684 210.687 |
expression | 20.2441 | 16.795 | 1.205 | 0.250 | -16.039 56.527 |
Omnibus: | 0.442 | Durbin-Watson: | 1.586 |
Prob(Omnibus): | 0.802 | Jarque-Bera (JB): | 0.543 |
Skew: | -0.258 | Prob(JB): | 0.762 |
Kurtosis: | 2.224 | Cond. No. | 93.8 |