AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.109 | 0.305 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 13.23 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.74e-05 |
Time: | 04:50:38 | Log-Likelihood: | -100.13 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.0144 | 30.542 | 1.605 | 0.125 | -14.911 112.940 |
C(dose)[T.1] | 22.2700 | 42.542 | 0.523 | 0.607 | -66.772 111.312 |
expression | 1.1347 | 6.543 | 0.173 | 0.864 | -12.560 14.830 |
expression:C(dose)[T.1] | 6.3854 | 8.880 | 0.719 | 0.481 | -12.201 24.972 |
Omnibus: | 1.948 | Durbin-Watson: | 1.661 |
Prob(Omnibus): | 0.378 | Jarque-Bera (JB): | 1.223 |
Skew: | 0.268 | Prob(JB): | 0.543 |
Kurtosis: | 2.006 | Cond. No. | 65.1 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.634 |
Method: | Least Squares | F-statistic: | 20.07 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.65e-05 |
Time: | 04:50:38 | Log-Likelihood: | -100.44 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 33.1452 | 20.857 | 1.589 | 0.128 | -10.361 76.651 |
C(dose)[T.1] | 52.2126 | 8.603 | 6.069 | 0.000 | 34.267 70.158 |
expression | 4.6014 | 4.370 | 1.053 | 0.305 | -4.514 13.717 |
Omnibus: | 1.725 | Durbin-Watson: | 1.712 |
Prob(Omnibus): | 0.422 | Jarque-Bera (JB): | 1.074 |
Skew: | 0.186 | Prob(JB): | 0.584 |
Kurtosis: | 2.009 | Cond. No. | 24.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:50:38 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.055 |
Model: | OLS | Adj. R-squared: | 0.010 |
Method: | Least Squares | F-statistic: | 1.225 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.281 |
Time: | 04:50:38 | Log-Likelihood: | -112.45 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 42.6602 | 34.214 | 1.247 | 0.226 | -28.493 113.813 |
expression | 7.8939 | 7.134 | 1.107 | 0.281 | -6.941 22.729 |
Omnibus: | 2.334 | Durbin-Watson: | 2.285 |
Prob(Omnibus): | 0.311 | Jarque-Bera (JB): | 1.276 |
Skew: | 0.229 | Prob(JB): | 0.528 |
Kurtosis: | 1.941 | Cond. No. | 24.4 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.993 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.299 |
Method: | Least Squares | F-statistic: | 2.986 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0776 |
Time: | 04:50:38 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 149.7 |
Df Residuals: | 11 | BIC: | 152.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 68.6443 | 44.361 | 1.547 | 0.150 | -28.993 166.282 |
C(dose)[T.1] | 45.3271 | 86.285 | 0.525 | 0.610 | -144.585 235.239 |
expression | -0.2285 | 8.025 | -0.028 | 0.978 | -17.892 17.435 |
expression:C(dose)[T.1] | 0.8068 | 17.848 | 0.045 | 0.965 | -38.477 40.090 |
Omnibus: | 2.768 | Durbin-Watson: | 0.808 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.893 |
Skew: | -0.851 | Prob(JB): | 0.388 |
Kurtosis: | 2.635 | Cond. No. | 64.6 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.885 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0281 |
Time: | 04:50:38 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.7763 | 38.290 | 1.770 | 0.102 | -15.651 151.204 |
C(dose)[T.1] | 49.1485 | 16.524 | 2.974 | 0.012 | 13.147 85.151 |
expression | -0.0653 | 6.864 | -0.010 | 0.993 | -15.020 14.889 |
Omnibus: | 2.707 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.866 |
Skew: | -0.842 | Prob(JB): | 0.393 |
Kurtosis: | 2.616 | Cond. No. | 26.3 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:50:38 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.042 |
Model: | OLS | Adj. R-squared: | -0.031 |
Method: | Least Squares | F-statistic: | 0.5753 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.462 |
Time: | 04:50:38 | Log-Likelihood: | -74.975 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 124.6289 | 42.016 | 2.966 | 0.011 | 33.860 215.398 |
expression | -6.2797 | 8.279 | -0.758 | 0.462 | -24.166 11.607 |
Omnibus: | 0.820 | Durbin-Watson: | 1.480 |
Prob(Omnibus): | 0.664 | Jarque-Bera (JB): | 0.655 |
Skew: | 0.049 | Prob(JB): | 0.721 |
Kurtosis: | 1.981 | Cond. No. | 22.2 |