AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.834 0.191 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 13.39
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.26e-05
Time: 04:58:03 Log-Likelihood: -100.04
No. Observations: 23 AIC: 208.1
Df Residuals: 19 BIC: 212.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.2508 62.796 1.724 0.101 -23.182 239.684
C(dose)[T.1] 63.5084 89.600 0.709 0.487 -124.027 251.044
expression -10.4035 12.034 -0.864 0.398 -35.591 14.784
expression:C(dose)[T.1] -2.6030 17.630 -0.148 0.884 -39.503 34.297
Omnibus: 0.734 Durbin-Watson: 2.352
Prob(Omnibus): 0.693 Jarque-Bera (JB): 0.754
Skew: 0.239 Prob(JB): 0.686
Kurtosis: 2.253 Cond. No. 141.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.646
Method: Least Squares F-statistic: 21.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.18e-05
Time: 04:58:03 Log-Likelihood: -100.05
No. Observations: 23 AIC: 206.1
Df Residuals: 20 BIC: 209.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.5508 44.930 2.550 0.019 20.829 208.273
C(dose)[T.1] 50.3450 8.679 5.801 0.000 32.240 68.450
expression -11.6162 8.577 -1.354 0.191 -29.507 6.275
Omnibus: 0.639 Durbin-Watson: 2.381
Prob(Omnibus): 0.727 Jarque-Bera (JB): 0.698
Skew: 0.226 Prob(JB): 0.705
Kurtosis: 2.276 Cond. No. 57.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:58:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.138
Model: OLS Adj. R-squared: 0.097
Method: Least Squares F-statistic: 3.354
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0813
Time: 04:58:03 Log-Likelihood: -111.40
No. Observations: 23 AIC: 226.8
Df Residuals: 21 BIC: 229.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 202.8506 67.565 3.002 0.007 62.341 343.360
expression -24.2795 13.257 -1.831 0.081 -51.849 3.290
Omnibus: 1.983 Durbin-Watson: 2.861
Prob(Omnibus): 0.371 Jarque-Bera (JB): 1.329
Skew: 0.338 Prob(JB): 0.515
Kurtosis: 2.035 Cond. No. 53.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.136 0.102 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.586
Model: OLS Adj. R-squared: 0.474
Method: Least Squares F-statistic: 5.200
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0177
Time: 04:58:03 Log-Likelihood: -68.677
No. Observations: 15 AIC: 145.4
Df Residuals: 11 BIC: 148.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.1724 70.602 1.929 0.080 -19.221 291.566
C(dose)[T.1] 133.5640 117.399 1.138 0.279 -124.829 391.957
expression -13.2602 13.470 -0.984 0.346 -42.907 16.387
expression:C(dose)[T.1] -18.7284 23.692 -0.790 0.446 -70.875 33.418
Omnibus: 1.017 Durbin-Watson: 0.966
Prob(Omnibus): 0.601 Jarque-Bera (JB): 0.463
Skew: -0.425 Prob(JB): 0.793
Kurtosis: 2.867 Cond. No. 106.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.563
Model: OLS Adj. R-squared: 0.490
Method: Least Squares F-statistic: 7.729
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00697
Time: 04:58:03 Log-Likelihood: -69.092
No. Observations: 15 AIC: 144.2
Df Residuals: 12 BIC: 146.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 167.5561 57.461 2.916 0.013 42.358 292.754
C(dose)[T.1] 41.5134 14.671 2.830 0.015 9.548 73.478
expression -19.3138 10.907 -1.771 0.102 -43.077 4.450
Omnibus: 1.203 Durbin-Watson: 0.995
Prob(Omnibus): 0.548 Jarque-Bera (JB): 0.721
Skew: -0.519 Prob(JB): 0.697
Kurtosis: 2.727 Cond. No. 43.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:58:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.271
Model: OLS Adj. R-squared: 0.215
Method: Least Squares F-statistic: 4.842
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0465
Time: 04:58:03 Log-Likelihood: -72.926
No. Observations: 15 AIC: 149.9
Df Residuals: 13 BIC: 151.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 235.0762 64.847 3.625 0.003 94.982 375.171
expression -28.4407 12.925 -2.200 0.046 -56.364 -0.518
Omnibus: 1.886 Durbin-Watson: 2.343
Prob(Omnibus): 0.389 Jarque-Bera (JB): 1.003
Skew: 0.225 Prob(JB): 0.605
Kurtosis: 1.816 Cond. No. 39.0