AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.741 | 0.400 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 12.96 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 7.67e-05 |
Time: | 11:43:55 | Log-Likelihood: | -100.29 |
No. Observations: | 23 | AIC: | 208.6 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 79.5434 | 206.500 | 0.385 | 0.704 | -352.666 511.753 |
C(dose)[T.1] | -145.0942 | 256.367 | -0.566 | 0.578 | -681.676 391.488 |
expression | -2.8145 | 22.931 | -0.123 | 0.904 | -50.809 45.180 |
expression:C(dose)[T.1] | 21.7387 | 28.306 | 0.768 | 0.452 | -37.506 80.984 |
Omnibus: | 0.006 | Durbin-Watson: | 1.993 |
Prob(Omnibus): | 0.997 | Jarque-Bera (JB): | 0.139 |
Skew: | -0.028 | Prob(JB): | 0.933 |
Kurtosis: | 2.623 | Cond. No. | 754. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.55 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.97e-05 |
Time: | 11:43:55 | Log-Likelihood: | -100.64 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -48.8762 | 119.919 | -0.408 | 0.688 | -299.022 201.270 |
C(dose)[T.1] | 51.6744 | 8.826 | 5.855 | 0.000 | 33.264 70.085 |
expression | 11.4518 | 13.305 | 0.861 | 0.400 | -16.303 39.206 |
Omnibus: | 0.102 | Durbin-Watson: | 1.990 |
Prob(Omnibus): | 0.950 | Jarque-Bera (JB): | 0.325 |
Skew: | -0.040 | Prob(JB): | 0.850 |
Kurtosis: | 2.424 | Cond. No. | 257. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:43:55 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.082 |
Model: | OLS | Adj. R-squared: | 0.038 |
Method: | Least Squares | F-statistic: | 1.865 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.187 |
Time: | 11:43:55 | Log-Likelihood: | -112.13 |
No. Observations: | 23 | AIC: | 228.3 |
Df Residuals: | 21 | BIC: | 230.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -178.8419 | 189.463 | -0.944 | 0.356 | -572.852 215.168 |
expression | 28.5037 | 20.873 | 1.366 | 0.187 | -14.903 71.911 |
Omnibus: | 2.259 | Durbin-Watson: | 2.411 |
Prob(Omnibus): | 0.323 | Jarque-Bera (JB): | 1.156 |
Skew: | 0.111 | Prob(JB): | 0.561 |
Kurtosis: | 1.924 | Cond. No. | 252. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.965 | 0.111 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.562 |
Model: | OLS | Adj. R-squared: | 0.442 |
Method: | Least Squares | F-statistic: | 4.699 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0239 |
Time: | 11:43:55 | Log-Likelihood: | -69.113 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 11 | BIC: | 149.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 393.0675 | 222.243 | 1.769 | 0.105 | -96.087 882.222 |
C(dose)[T.1] | -59.3343 | 344.275 | -0.172 | 0.866 | -817.079 698.410 |
expression | -32.3795 | 22.073 | -1.467 | 0.170 | -80.961 16.202 |
expression:C(dose)[T.1] | 10.5537 | 34.422 | 0.307 | 0.765 | -65.209 86.316 |
Omnibus: | 2.415 | Durbin-Watson: | 0.930 |
Prob(Omnibus): | 0.299 | Jarque-Bera (JB): | 1.553 |
Skew: | -0.776 | Prob(JB): | 0.460 |
Kurtosis: | 2.722 | Cond. No. | 608. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.558 |
Model: | OLS | Adj. R-squared: | 0.484 |
Method: | Least Squares | F-statistic: | 7.574 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00746 |
Time: | 11:43:55 | Log-Likelihood: | -69.177 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 349.4244 | 164.105 | 2.129 | 0.055 | -8.129 706.978 |
C(dose)[T.1] | 46.1223 | 14.207 | 3.246 | 0.007 | 15.167 77.077 |
expression | -28.0399 | 16.285 | -1.722 | 0.111 | -63.523 7.443 |
Omnibus: | 2.526 | Durbin-Watson: | 0.844 |
Prob(Omnibus): | 0.283 | Jarque-Bera (JB): | 1.641 |
Skew: | -0.797 | Prob(JB): | 0.440 |
Kurtosis: | 2.714 | Cond. No. | 236. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:43:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.170 |
Model: | OLS | Adj. R-squared: | 0.106 |
Method: | Least Squares | F-statistic: | 2.658 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.127 |
Time: | 11:43:55 | Log-Likelihood: | -73.905 |
No. Observations: | 15 | AIC: | 151.8 |
Df Residuals: | 13 | BIC: | 153.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 440.4538 | 212.903 | 2.069 | 0.059 | -19.496 900.403 |
expression | -34.6840 | 21.273 | -1.630 | 0.127 | -80.642 11.274 |
Omnibus: | 4.533 | Durbin-Watson: | 1.703 |
Prob(Omnibus): | 0.104 | Jarque-Bera (JB): | 1.599 |
Skew: | 0.365 | Prob(JB): | 0.450 |
Kurtosis: | 1.577 | Cond. No. | 232. |