AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.006 | 0.939 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.30 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 05:01:53 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 16.2173 | 59.555 | 0.272 | 0.788 | -108.433 140.867 |
C(dose)[T.1] | 114.9030 | 78.873 | 1.457 | 0.161 | -50.181 279.987 |
expression | 11.3067 | 17.631 | 0.641 | 0.529 | -25.594 48.208 |
expression:C(dose)[T.1] | -18.4056 | 23.444 | -0.785 | 0.442 | -67.474 30.663 |
Omnibus: | 0.840 | Durbin-Watson: | 2.193 |
Prob(Omnibus): | 0.657 | Jarque-Bera (JB): | 0.739 |
Skew: | 0.111 | Prob(JB): | 0.691 |
Kurtosis: | 2.150 | Cond. No. | 87.1 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 05:01:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.1935 | 39.142 | 1.308 | 0.206 | -30.456 132.843 |
C(dose)[T.1] | 53.3722 | 8.780 | 6.079 | 0.000 | 35.057 71.687 |
expression | 0.8973 | 11.509 | 0.078 | 0.939 | -23.109 24.904 |
Omnibus: | 0.281 | Durbin-Watson: | 1.905 |
Prob(Omnibus): | 0.869 | Jarque-Bera (JB): | 0.460 |
Skew: | 0.047 | Prob(JB): | 0.795 |
Kurtosis: | 2.314 | Cond. No. | 33.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.02023 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.888 |
Time: | 05:01:53 | Log-Likelihood: | -113.09 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 88.7126 | 63.654 | 1.394 | 0.178 | -43.662 221.087 |
expression | -2.6921 | 18.928 | -0.142 | 0.888 | -42.054 36.670 |
Omnibus: | 3.183 | Durbin-Watson: | 2.492 |
Prob(Omnibus): | 0.204 | Jarque-Bera (JB): | 1.535 |
Skew: | 0.283 | Prob(JB): | 0.464 |
Kurtosis: | 1.868 | Cond. No. | 32.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.097 | 0.761 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.305 |
Method: | Least Squares | F-statistic: | 3.051 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0740 |
Time: | 05:01:53 | Log-Likelihood: | -70.760 |
No. Observations: | 15 | AIC: | 149.5 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.6549 | 82.216 | 1.139 | 0.279 | -87.302 274.612 |
C(dose)[T.1] | 29.2494 | 126.666 | 0.231 | 0.822 | -249.540 308.038 |
expression | -5.8355 | 18.099 | -0.322 | 0.753 | -45.672 34.001 |
expression:C(dose)[T.1] | 4.2205 | 30.554 | 0.138 | 0.893 | -63.029 71.470 |
Omnibus: | 2.745 | Durbin-Watson: | 0.894 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.952 |
Skew: | -0.854 | Prob(JB): | 0.377 |
Kurtosis: | 2.549 | Cond. No. | 85.9 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.362 |
Method: | Least Squares | F-statistic: | 4.973 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0267 |
Time: | 05:01:53 | Log-Likelihood: | -70.773 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 86.9990 | 63.835 | 1.363 | 0.198 | -52.085 226.083 |
C(dose)[T.1] | 46.5562 | 17.819 | 2.613 | 0.023 | 7.731 85.381 |
expression | -4.3545 | 13.973 | -0.312 | 0.761 | -34.800 26.091 |
Omnibus: | 2.530 | Durbin-Watson: | 0.862 |
Prob(Omnibus): | 0.282 | Jarque-Bera (JB): | 1.878 |
Skew: | -0.819 | Prob(JB): | 0.391 |
Kurtosis: | 2.432 | Cond. No. | 36.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.142 |
Model: | OLS | Adj. R-squared: | 0.076 |
Method: | Least Squares | F-statistic: | 2.154 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.166 |
Time: | 05:01:53 | Log-Likelihood: | -74.150 |
No. Observations: | 15 | AIC: | 152.3 |
Df Residuals: | 13 | BIC: | 153.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 184.2275 | 62.414 | 2.952 | 0.011 | 49.389 319.065 |
expression | -21.7126 | 14.793 | -1.468 | 0.166 | -53.671 10.246 |
Omnibus: | 0.887 | Durbin-Watson: | 1.608 |
Prob(Omnibus): | 0.642 | Jarque-Bera (JB): | 0.673 |
Skew: | 0.004 | Prob(JB): | 0.714 |
Kurtosis: | 1.962 | Cond. No. | 29.5 |