AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.264 0.613 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.97
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000126
Time: 23:04:43 Log-Likelihood: -100.90
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.8057 67.890 1.146 0.266 -64.290 219.901
C(dose)[T.1] 43.3639 77.105 0.562 0.580 -118.019 204.747
expression -3.7079 10.624 -0.349 0.731 -25.943 18.527
expression:C(dose)[T.1] 1.4416 12.193 0.118 0.907 -24.079 26.963
Omnibus: 0.314 Durbin-Watson: 1.903
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.479
Skew: -0.037 Prob(JB): 0.787
Kurtosis: 2.297 Cond. No. 161.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.87
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.49e-05
Time: 23:04:43 Log-Likelihood: -100.91
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.8417 32.913 2.152 0.044 2.187 139.496
C(dose)[T.1] 52.4157 8.895 5.893 0.000 33.861 70.970
expression -2.6136 5.084 -0.514 0.613 -13.219 7.992
Omnibus: 0.227 Durbin-Watson: 1.899
Prob(Omnibus): 0.893 Jarque-Bera (JB): 0.424
Skew: -0.022 Prob(JB): 0.809
Kurtosis: 2.336 Cond. No. 48.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:04:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.052
Model: OLS Adj. R-squared: 0.007
Method: Least Squares F-statistic: 1.158
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.294
Time: 23:04:43 Log-Likelihood: -112.49
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.3128 50.299 2.650 0.015 28.711 237.915
expression -8.6508 8.039 -1.076 0.294 -25.369 8.067
Omnibus: 1.828 Durbin-Watson: 2.641
Prob(Omnibus): 0.401 Jarque-Bera (JB): 1.220
Skew: 0.293 Prob(JB): 0.543
Kurtosis: 2.036 Cond. No. 45.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.956 0.347 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.684
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 7.925
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00430
Time: 23:04:43 Log-Likelihood: -66.668
No. Observations: 15 AIC: 141.3
Df Residuals: 11 BIC: 144.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 118.5976 94.358 1.257 0.235 -89.083 326.279
C(dose)[T.1] -348.0193 155.527 -2.238 0.047 -690.331 -5.708
expression -7.2961 13.392 -0.545 0.597 -36.771 22.179
expression:C(dose)[T.1] 59.8093 23.014 2.599 0.025 9.155 110.464
Omnibus: 5.115 Durbin-Watson: 1.461
Prob(Omnibus): 0.078 Jarque-Bera (JB): 2.754
Skew: -1.023 Prob(JB): 0.252
Kurtosis: 3.465 Cond. No. 216.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 5.752
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0177
Time: 23:04:43 Log-Likelihood: -70.258
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.4248 93.562 -0.250 0.807 -227.278 180.429
C(dose)[T.1] 54.6826 16.153 3.385 0.005 19.488 89.877
expression 12.9546 13.247 0.978 0.347 -15.909 41.818
Omnibus: 0.915 Durbin-Watson: 0.979
Prob(Omnibus): 0.633 Jarque-Bera (JB): 0.827
Skew: -0.460 Prob(JB): 0.661
Kurtosis: 2.311 Cond. No. 86.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:04:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.02466
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.878
Time: 23:04:43 Log-Likelihood: -75.286
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.4529 113.721 0.980 0.345 -134.227 357.133
expression -2.6205 16.688 -0.157 0.878 -38.673 33.432
Omnibus: 0.654 Durbin-Watson: 1.572
Prob(Omnibus): 0.721 Jarque-Bera (JB): 0.600
Skew: 0.056 Prob(JB): 0.741
Kurtosis: 2.026 Cond. No. 78.0