AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.443 0.134 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 14.29
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.13e-05
Time: 22:55:12 Log-Likelihood: -99.528
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 166.4039 70.080 2.374 0.028 19.725 313.083
C(dose)[T.1] -20.8781 126.371 -0.165 0.871 -285.376 243.619
expression -17.4456 10.859 -1.607 0.125 -40.174 5.283
expression:C(dose)[T.1] 11.5563 19.569 0.591 0.562 -29.401 52.514
Omnibus: 0.775 Durbin-Watson: 1.397
Prob(Omnibus): 0.679 Jarque-Bera (JB): 0.694
Skew: -0.012 Prob(JB): 0.707
Kurtosis: 2.149 Cond. No. 238.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.656
Method: Least Squares F-statistic: 21.97
Date: Thu, 03 Apr 2025 Prob (F-statistic): 8.95e-06
Time: 22:55:12 Log-Likelihood: -99.738
No. Observations: 23 AIC: 205.5
Df Residuals: 20 BIC: 208.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.5165 57.430 2.499 0.021 23.720 263.313
C(dose)[T.1] 53.5853 8.280 6.471 0.000 36.313 70.858
expression -13.8868 8.885 -1.563 0.134 -32.422 4.648
Omnibus: 1.878 Durbin-Watson: 1.495
Prob(Omnibus): 0.391 Jarque-Bera (JB): 1.059
Skew: 0.104 Prob(JB): 0.589
Kurtosis: 1.969 Cond. No. 92.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.032
Model: OLS Adj. R-squared: -0.014
Method: Least Squares F-statistic: 0.7028
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.411
Time: 22:55:13 Log-Likelihood: -112.73
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 162.0434 98.460 1.646 0.115 -42.715 366.801
expression -12.7841 15.250 -0.838 0.411 -44.498 18.929
Omnibus: 2.828 Durbin-Watson: 2.419
Prob(Omnibus): 0.243 Jarque-Bera (JB): 1.684
Skew: 0.408 Prob(JB): 0.431
Kurtosis: 1.955 Cond. No. 91.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.936 0.352 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.491
Model: OLS Adj. R-squared: 0.352
Method: Least Squares F-statistic: 3.531
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0521
Time: 22:55:13 Log-Likelihood: -70.242
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.3222 103.011 -0.246 0.810 -252.047 201.403
C(dose)[T.1] 88.3017 215.214 0.410 0.689 -385.380 561.983
expression 14.9693 16.521 0.906 0.384 -21.392 51.331
expression:C(dose)[T.1] -6.7357 33.336 -0.202 0.844 -80.108 66.636
Omnibus: 3.655 Durbin-Watson: 1.074
Prob(Omnibus): 0.161 Jarque-Bera (JB): 2.225
Skew: -0.943 Prob(JB): 0.329
Kurtosis: 2.942 Cond. No. 216.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.403
Method: Least Squares F-statistic: 5.734
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0179
Time: 22:55:13 Log-Likelihood: -70.270
No. Observations: 15 AIC: 146.5
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.0723 85.996 -0.175 0.864 -202.442 172.298
C(dose)[T.1] 44.9438 15.784 2.847 0.015 10.553 79.334
expression 13.3151 13.764 0.967 0.352 -16.674 43.304
Omnibus: 4.132 Durbin-Watson: 1.033
Prob(Omnibus): 0.127 Jarque-Bera (JB): 2.424
Skew: -0.984 Prob(JB): 0.298
Kurtosis: 3.082 Cond. No. 74.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:13 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.143
Model: OLS Adj. R-squared: 0.077
Method: Least Squares F-statistic: 2.172
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.164
Time: 22:55:13 Log-Likelihood: -74.141
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -60.5897 105.088 -0.577 0.574 -287.619 166.440
expression 24.2298 16.440 1.474 0.164 -11.288 59.747
Omnibus: 1.052 Durbin-Watson: 1.831
Prob(Omnibus): 0.591 Jarque-Bera (JB): 0.723
Skew: 0.034 Prob(JB): 0.697
Kurtosis: 1.926 Cond. No. 73.1