AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.694 0.415 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000104
Time: 05:10:44 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.6359 62.597 0.218 0.830 -117.382 144.653
C(dose)[T.1] 57.7918 97.393 0.593 0.560 -146.054 261.638
expression 9.8291 15.092 0.651 0.523 -21.759 41.417
expression:C(dose)[T.1] -0.7267 24.058 -0.030 0.976 -51.080 49.626
Omnibus: 1.760 Durbin-Watson: 2.130
Prob(Omnibus): 0.415 Jarque-Bera (JB): 1.029
Skew: 0.104 Prob(JB): 0.598
Kurtosis: 1.985 Cond. No. 118.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.48
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.01e-05
Time: 05:10:44 Log-Likelihood: -100.67
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 14.8165 47.661 0.311 0.759 -84.603 114.236
C(dose)[T.1] 54.8626 8.814 6.225 0.000 36.477 73.248
expression 9.5431 11.456 0.833 0.415 -14.353 33.439
Omnibus: 1.822 Durbin-Watson: 2.128
Prob(Omnibus): 0.402 Jarque-Bera (JB): 1.047
Skew: 0.108 Prob(JB): 0.593
Kurtosis: 1.977 Cond. No. 48.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:10:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07912
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.781
Time: 05:10:44 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.0756 76.271 1.325 0.199 -57.539 259.691
expression -5.2719 18.742 -0.281 0.781 -44.248 33.704
Omnibus: 3.107 Durbin-Watson: 2.440
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.499
Skew: 0.269 Prob(JB): 0.473
Kurtosis: 1.871 Cond. No. 45.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
10.842 0.006 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.752
Model: OLS Adj. R-squared: 0.684
Method: Least Squares F-statistic: 11.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00118
Time: 05:10:44 Log-Likelihood: -64.847
No. Observations: 15 AIC: 137.7
Df Residuals: 11 BIC: 140.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -37.8700 73.771 -0.513 0.618 -200.239 124.499
C(dose)[T.1] -93.3386 104.404 -0.894 0.390 -323.130 136.453
expression 21.5862 15.033 1.436 0.179 -11.500 54.673
expression:C(dose)[T.1] 28.6903 21.172 1.355 0.203 -17.909 75.290
Omnibus: 0.908 Durbin-Watson: 0.801
Prob(Omnibus): 0.635 Jarque-Bera (JB): 0.740
Skew: -0.225 Prob(JB): 0.691
Kurtosis: 2.010 Cond. No. 130.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.710
Model: OLS Adj. R-squared: 0.662
Method: Least Squares F-statistic: 14.72
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000590
Time: 05:10:44 Log-Likelihood: -66.005
No. Observations: 15 AIC: 138.0
Df Residuals: 12 BIC: 140.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -108.4241 54.053 -2.006 0.068 -226.195 9.346
C(dose)[T.1] 47.3446 11.422 4.145 0.001 22.458 72.231
expression 36.0498 10.948 3.293 0.006 12.195 59.904
Omnibus: 1.209 Durbin-Watson: 0.822
Prob(Omnibus): 0.546 Jarque-Bera (JB): 0.768
Skew: -0.056 Prob(JB): 0.681
Kurtosis: 1.897 Cond. No. 49.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:10:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.296
Model: OLS Adj. R-squared: 0.242
Method: Least Squares F-statistic: 5.461
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0361
Time: 05:10:44 Log-Likelihood: -72.670
No. Observations: 15 AIC: 149.3
Df Residuals: 13 BIC: 150.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -94.1346 80.818 -1.165 0.265 -268.732 80.463
expression 38.2843 16.383 2.337 0.036 2.890 73.678
Omnibus: 1.072 Durbin-Watson: 2.280
Prob(Omnibus): 0.585 Jarque-Bera (JB): 0.727
Skew: -0.013 Prob(JB): 0.695
Kurtosis: 1.921 Cond. No. 48.7