AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.433 0.518 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.73
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.57e-05
Time: 04:51:59 Log-Likelihood: -100.43
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.2774 82.930 0.787 0.441 -108.298 238.853
C(dose)[T.1] 183.2796 160.462 1.142 0.268 -152.572 519.131
expression -1.3998 10.459 -0.134 0.895 -23.291 20.492
expression:C(dose)[T.1] -16.0778 19.967 -0.805 0.431 -57.869 25.713
Omnibus: 0.089 Durbin-Watson: 2.091
Prob(Omnibus): 0.957 Jarque-Bera (JB): 0.315
Skew: 0.001 Prob(JB): 0.854
Kurtosis: 2.427 Cond. No. 354.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.29e-05
Time: 04:51:59 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.1642 70.089 1.429 0.168 -46.038 246.367
C(dose)[T.1] 54.2696 8.791 6.173 0.000 35.931 72.608
expression -5.8115 8.831 -0.658 0.518 -24.232 12.609
Omnibus: 0.349 Durbin-Watson: 2.030
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.506
Skew: 0.111 Prob(JB): 0.777
Kurtosis: 2.308 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:51:59 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.04209
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.839
Time: 04:52:00 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.9693 115.978 0.483 0.634 -185.219 297.158
expression 2.9743 14.497 0.205 0.839 -27.175 33.123
Omnibus: 2.879 Durbin-Watson: 2.478
Prob(Omnibus): 0.237 Jarque-Bera (JB): 1.483
Skew: 0.291 Prob(JB): 0.476
Kurtosis: 1.900 Cond. No. 131.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.728 0.213 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.528
Model: OLS Adj. R-squared: 0.400
Method: Least Squares F-statistic: 4.105
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0351
Time: 04:52:00 Log-Likelihood: -69.666
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 257.9002 170.330 1.514 0.158 -116.993 632.794
C(dose)[T.1] -55.5229 203.639 -0.273 0.790 -503.728 392.683
expression -20.9947 18.735 -1.121 0.286 -62.229 20.240
expression:C(dose)[T.1] 11.0019 22.774 0.483 0.639 -39.124 61.128
Omnibus: 2.317 Durbin-Watson: 0.717
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.550
Skew: -0.582 Prob(JB): 0.461
Kurtosis: 1.940 Cond. No. 345.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.518
Model: OLS Adj. R-squared: 0.438
Method: Least Squares F-statistic: 6.453
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0125
Time: 04:52:00 Log-Likelihood: -69.824
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.3562 94.120 2.022 0.066 -14.713 395.425
C(dose)[T.1] 42.5441 15.561 2.734 0.018 8.639 76.449
expression -13.5497 10.306 -1.315 0.213 -36.006 8.906
Omnibus: 2.319 Durbin-Watson: 0.680
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.546
Skew: -0.580 Prob(JB): 0.462
Kurtosis: 1.937 Cond. No. 115.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:52:00 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.218
Model: OLS Adj. R-squared: 0.158
Method: Least Squares F-statistic: 3.625
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0793
Time: 04:52:00 Log-Likelihood: -73.455
No. Observations: 15 AIC: 150.9
Df Residuals: 13 BIC: 152.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 293.7733 105.485 2.785 0.015 65.887 521.660
expression -22.7123 11.929 -1.904 0.079 -48.484 3.059
Omnibus: 1.491 Durbin-Watson: 1.593
Prob(Omnibus): 0.475 Jarque-Bera (JB): 1.047
Skew: 0.387 Prob(JB): 0.592
Kurtosis: 1.962 Cond. No. 105.