AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.589 0.452 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.700
Model: OLS Adj. R-squared: 0.653
Method: Least Squares F-statistic: 14.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.32e-05
Time: 04:40:08 Log-Likelihood: -99.257
No. Observations: 23 AIC: 206.5
Df Residuals: 19 BIC: 211.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.2530 30.387 3.168 0.005 32.652 159.854
C(dose)[T.1] -56.5525 68.242 -0.829 0.418 -199.384 86.279
expression -10.1006 7.168 -1.409 0.175 -25.104 4.902
expression:C(dose)[T.1] 27.0288 16.780 1.611 0.124 -8.092 62.150
Omnibus: 3.963 Durbin-Watson: 2.234
Prob(Omnibus): 0.138 Jarque-Bera (JB): 1.563
Skew: 0.197 Prob(JB): 0.458
Kurtosis: 1.785 Cond. No. 82.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 19.33
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.12e-05
Time: 04:40:08 Log-Likelihood: -100.73
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.7224 28.663 2.642 0.016 15.931 135.513
C(dose)[T.1] 52.5370 8.706 6.034 0.000 34.376 70.698
expression -5.1684 6.735 -0.767 0.452 -19.216 8.880
Omnibus: 0.031 Durbin-Watson: 2.051
Prob(Omnibus): 0.985 Jarque-Bera (JB): 0.243
Skew: -0.018 Prob(JB): 0.886
Kurtosis: 2.498 Cond. No. 29.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:40:08 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.038
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.8385
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.370
Time: 04:40:08 Log-Likelihood: -112.65
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.7459 45.361 2.662 0.015 26.413 215.079
expression -10.0349 10.959 -0.916 0.370 -32.825 12.755
Omnibus: 3.305 Durbin-Watson: 2.634
Prob(Omnibus): 0.192 Jarque-Bera (JB): 1.795
Skew: 0.408 Prob(JB): 0.408
Kurtosis: 1.901 Cond. No. 28.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.213 0.653 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.311
Method: Least Squares F-statistic: 3.103
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0711
Time: 04:40:08 Log-Likelihood: -70.701
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.1934 60.932 0.758 0.464 -87.918 180.305
C(dose)[T.1] 51.0428 96.484 0.529 0.607 -161.317 263.402
expression 4.4945 12.648 0.355 0.729 -23.344 32.333
expression:C(dose)[T.1] -0.0884 21.038 -0.004 0.997 -46.392 46.215
Omnibus: 2.916 Durbin-Watson: 0.719
Prob(Omnibus): 0.233 Jarque-Bera (JB): 1.772
Skew: -0.839 Prob(JB): 0.412
Kurtosis: 2.856 Cond. No. 71.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 5.078
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0252
Time: 04:40:08 Log-Likelihood: -70.701
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.3444 47.118 0.984 0.345 -56.317 149.006
C(dose)[T.1] 50.6434 15.914 3.182 0.008 15.969 85.318
expression 4.4625 9.677 0.461 0.653 -16.621 25.546
Omnibus: 2.937 Durbin-Watson: 0.719
Prob(Omnibus): 0.230 Jarque-Bera (JB): 1.782
Skew: -0.841 Prob(JB): 0.410
Kurtosis: 2.861 Cond. No. 29.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:40:08 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01689
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.899
Time: 04:40:08 Log-Likelihood: -75.290
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 100.9889 57.244 1.764 0.101 -22.679 224.657
expression -1.6087 12.377 -0.130 0.899 -28.347 25.130
Omnibus: 0.313 Durbin-Watson: 1.615
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.457
Skew: 0.031 Prob(JB): 0.796
Kurtosis: 2.147 Cond. No. 27.3