AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.746 0.398 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.609
Method: Least Squares F-statistic: 12.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000101
Time: 04:50:01 Log-Likelihood: -100.63
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.7317 53.225 0.314 0.757 -94.670 128.133
C(dose)[T.1] 64.2725 77.571 0.829 0.418 -98.085 226.630
expression 7.1306 10.060 0.709 0.487 -13.926 28.187
expression:C(dose)[T.1] -1.9471 14.870 -0.131 0.897 -33.070 29.176
Omnibus: 0.117 Durbin-Watson: 1.800
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.319
Skew: 0.106 Prob(JB): 0.852
Kurtosis: 2.463 Cond. No. 121.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.96e-05
Time: 04:50:01 Log-Likelihood: -100.64
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 21.4156 38.431 0.557 0.584 -58.751 101.582
C(dose)[T.1] 54.1823 8.666 6.252 0.000 36.105 72.260
expression 6.2394 7.224 0.864 0.398 -8.830 21.308
Omnibus: 0.114 Durbin-Watson: 1.765
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.325
Skew: 0.089 Prob(JB): 0.850
Kurtosis: 2.446 Cond. No. 48.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:50:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.008957
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.925
Time: 04:50:02 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.8022 62.916 1.173 0.254 -57.038 204.642
expression 1.1395 12.040 0.095 0.925 -23.900 26.179
Omnibus: 3.617 Durbin-Watson: 2.470
Prob(Omnibus): 0.164 Jarque-Bera (JB): 1.637
Skew: 0.293 Prob(JB): 0.441
Kurtosis: 1.832 Cond. No. 47.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.971 0.110 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.441
Method: Least Squares F-statistic: 4.676
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0243
Time: 04:50:02 Log-Likelihood: -69.135
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.6794 73.741 -0.416 0.685 -192.982 131.623
C(dose)[T.1] 80.3838 100.374 0.801 0.440 -140.538 301.305
expression 17.0297 12.664 1.345 0.206 -10.844 44.903
expression:C(dose)[T.1] -4.3288 17.994 -0.241 0.814 -43.934 35.276
Omnibus: 0.323 Durbin-Watson: 1.361
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.471
Skew: -0.189 Prob(JB): 0.790
Kurtosis: 2.219 Cond. No. 104.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.558
Model: OLS Adj. R-squared: 0.485
Method: Least Squares F-statistic: 7.580
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00744
Time: 04:50:02 Log-Likelihood: -69.174
No. Observations: 15 AIC: 144.3
Df Residuals: 12 BIC: 146.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -18.3271 50.807 -0.361 0.725 -129.026 92.371
C(dose)[T.1] 56.5205 14.718 3.840 0.002 24.452 88.589
expression 14.8856 8.636 1.724 0.110 -3.931 33.702
Omnibus: 0.168 Durbin-Watson: 1.359
Prob(Omnibus): 0.920 Jarque-Bera (JB): 0.370
Skew: -0.120 Prob(JB): 0.831
Kurtosis: 2.269 Cond. No. 41.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:50:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.061
Method: Least Squares F-statistic: 0.2005
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.662
Time: 04:50:02 Log-Likelihood: -75.185
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.4642 65.989 0.977 0.346 -78.097 207.025
expression 5.3109 11.860 0.448 0.662 -20.311 30.933
Omnibus: 0.656 Durbin-Watson: 1.763
Prob(Omnibus): 0.721 Jarque-Bera (JB): 0.643
Skew: 0.221 Prob(JB): 0.725
Kurtosis: 2.086 Cond. No. 37.6