AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.379 0.254 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 13.00
Date: Thu, 03 Apr 2025 Prob (F-statistic): 7.55e-05
Time: 22:53:52 Log-Likelihood: -100.27
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 101.4238 51.994 1.951 0.066 -7.402 210.249
C(dose)[T.1] 68.5297 101.457 0.675 0.508 -143.822 280.882
expression -8.6206 9.429 -0.914 0.372 -28.357 11.115
expression:C(dose)[T.1] -3.8978 19.817 -0.197 0.846 -45.376 37.580
Omnibus: 0.157 Durbin-Watson: 1.908
Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.022
Skew: 0.028 Prob(JB): 0.989
Kurtosis: 2.861 Cond. No. 148.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 20.46
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.45e-05
Time: 22:53:52 Log-Likelihood: -100.30
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 106.2572 44.706 2.377 0.028 13.002 199.512
C(dose)[T.1] 48.6640 9.369 5.194 0.000 29.120 68.208
expression -9.5030 8.092 -1.174 0.254 -26.382 7.376
Omnibus: 0.127 Durbin-Watson: 1.857
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.034
Skew: 0.037 Prob(JB): 0.983
Kurtosis: 2.828 Cond. No. 58.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:53:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.229
Model: OLS Adj. R-squared: 0.192
Method: Least Squares F-statistic: 6.232
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0209
Time: 22:53:52 Log-Likelihood: -110.12
No. Observations: 23 AIC: 224.2
Df Residuals: 21 BIC: 226.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 223.0985 57.784 3.861 0.001 102.930 343.267
expression -27.3529 10.957 -2.496 0.021 -50.139 -4.567
Omnibus: 1.552 Durbin-Watson: 2.021
Prob(Omnibus): 0.460 Jarque-Bera (JB): 1.004
Skew: 0.159 Prob(JB): 0.605
Kurtosis: 2.027 Cond. No. 49.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.092 0.317 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.506
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 3.757
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0444
Time: 22:53:53 Log-Likelihood: -70.009
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -83.7816 134.736 -0.622 0.547 -380.334 212.770
C(dose)[T.1] 179.4551 268.214 0.669 0.517 -410.880 769.791
expression 27.2658 24.209 1.126 0.284 -26.017 80.549
expression:C(dose)[T.1] -23.6219 47.006 -0.503 0.625 -127.082 79.838
Omnibus: 3.785 Durbin-Watson: 1.200
Prob(Omnibus): 0.151 Jarque-Bera (JB): 2.250
Skew: -0.949 Prob(JB): 0.325
Kurtosis: 3.005 Cond. No. 245.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.495
Model: OLS Adj. R-squared: 0.411
Method: Least Squares F-statistic: 5.875
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0166
Time: 22:53:53 Log-Likelihood: -70.180
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -49.0353 111.982 -0.438 0.669 -293.024 194.953
C(dose)[T.1] 44.9140 15.616 2.876 0.014 10.890 78.938
expression 21.0005 20.095 1.045 0.317 -22.782 64.783
Omnibus: 7.093 Durbin-Watson: 1.102
Prob(Omnibus): 0.029 Jarque-Bera (JB): 4.056
Skew: -1.211 Prob(JB): 0.132
Kurtosis: 3.790 Cond. No. 87.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:53:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.146
Model: OLS Adj. R-squared: 0.081
Method: Least Squares F-statistic: 2.231
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.159
Time: 22:53:53 Log-Likelihood: -74.112
No. Observations: 15 AIC: 152.2
Df Residuals: 13 BIC: 153.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -110.8357 137.241 -0.808 0.434 -407.326 185.655
expression 36.1661 24.214 1.494 0.159 -16.145 88.477
Omnibus: 1.055 Durbin-Watson: 2.191
Prob(Omnibus): 0.590 Jarque-Bera (JB): 0.723
Skew: -0.021 Prob(JB): 0.697
Kurtosis: 1.925 Cond. No. 85.4