AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.941 0.038 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.721
Model: OLS Adj. R-squared: 0.677
Method: Least Squares F-statistic: 16.35
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.70e-05
Time: 22:55:11 Log-Likelihood: -98.431
No. Observations: 23 AIC: 204.9
Df Residuals: 19 BIC: 209.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.1547 56.364 0.145 0.886 -109.817 126.127
C(dose)[T.1] 25.1429 67.227 0.374 0.713 -115.565 165.850
expression 7.2015 8.771 0.821 0.422 -11.156 25.560
expression:C(dose)[T.1] 4.0542 10.345 0.392 0.699 -17.597 25.706
Omnibus: 1.206 Durbin-Watson: 1.844
Prob(Omnibus): 0.547 Jarque-Bera (JB): 1.116
Skew: 0.414 Prob(JB): 0.572
Kurtosis: 2.308 Cond. No. 161.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.719
Model: OLS Adj. R-squared: 0.690
Method: Least Squares F-statistic: 25.53
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.12e-06
Time: 22:55:11 Log-Likelihood: -98.524
No. Observations: 23 AIC: 203.0
Df Residuals: 20 BIC: 206.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -10.4837 29.605 -0.354 0.727 -72.238 51.271
C(dose)[T.1] 51.2987 7.907 6.488 0.000 34.806 67.792
expression 10.1161 4.551 2.223 0.038 0.623 19.609
Omnibus: 1.435 Durbin-Watson: 1.808
Prob(Omnibus): 0.488 Jarque-Bera (JB): 1.178
Skew: 0.365 Prob(JB): 0.555
Kurtosis: 2.165 Cond. No. 50.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:11 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.126
Model: OLS Adj. R-squared: 0.085
Method: Least Squares F-statistic: 3.035
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0961
Time: 22:55:11 Log-Likelihood: -111.55
No. Observations: 23 AIC: 227.1
Df Residuals: 21 BIC: 229.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.1787 50.904 -0.161 0.874 -114.039 97.682
expression 13.5405 7.773 1.742 0.096 -2.624 29.705
Omnibus: 1.275 Durbin-Watson: 2.612
Prob(Omnibus): 0.529 Jarque-Bera (JB): 0.968
Skew: 0.225 Prob(JB): 0.616
Kurtosis: 2.101 Cond. No. 50.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.400 0.539 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.490
Model: OLS Adj. R-squared: 0.350
Method: Least Squares F-statistic: 3.518
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0525
Time: 22:55:11 Log-Likelihood: -70.255
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.2965 57.011 0.268 0.793 -110.185 140.778
C(dose)[T.1] 106.6502 79.184 1.347 0.205 -67.634 280.934
expression 8.3792 8.973 0.934 0.370 -11.371 28.130
expression:C(dose)[T.1] -9.3400 13.234 -0.706 0.495 -38.469 19.789
Omnibus: 3.064 Durbin-Watson: 0.946
Prob(Omnibus): 0.216 Jarque-Bera (JB): 2.013
Skew: -0.887 Prob(JB): 0.365
Kurtosis: 2.734 Cond. No. 80.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.248
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0230
Time: 22:55:11 Log-Likelihood: -70.587
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.0113 41.730 1.007 0.334 -48.910 132.932
C(dose)[T.1] 51.9854 16.099 3.229 0.007 16.910 87.061
expression 4.0853 6.456 0.633 0.539 -9.982 18.152
Omnibus: 1.935 Durbin-Watson: 0.980
Prob(Omnibus): 0.380 Jarque-Bera (JB): 1.257
Skew: -0.691 Prob(JB): 0.533
Kurtosis: 2.680 Cond. No. 33.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:11 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03959
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.845
Time: 22:55:11 Log-Likelihood: -75.277
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 103.1723 48.840 2.112 0.055 -2.340 208.684
expression -1.6228 8.156 -0.199 0.845 -19.243 15.997
Omnibus: 0.610 Durbin-Watson: 1.554
Prob(Omnibus): 0.737 Jarque-Bera (JB): 0.582
Skew: -0.021 Prob(JB): 0.748
Kurtosis: 2.036 Cond. No. 29.6