AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.348 | 0.562 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.32 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000105 |
Time: | 23:03:50 | Log-Likelihood: | -100.68 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.5162 | 365.460 | 0.141 | 0.889 | -713.401 816.434 |
C(dose)[T.1] | 335.7855 | 505.349 | 0.664 | 0.514 | -721.923 1393.494 |
expression | 0.2622 | 35.593 | 0.007 | 0.994 | -74.235 74.760 |
expression:C(dose)[T.1] | -27.0035 | 48.781 | -0.554 | 0.586 | -129.102 75.095 |
Omnibus: | 0.916 | Durbin-Watson: | 1.849 |
Prob(Omnibus): | 0.633 | Jarque-Bera (JB): | 0.830 |
Skew: | 0.223 | Prob(JB): | 0.661 |
Kurtosis: | 2.184 | Cond. No. | 1.57e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 18.99 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.38e-05 |
Time: | 23:03:51 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 199.1117 | 245.574 | 0.811 | 0.427 | -313.146 711.369 |
C(dose)[T.1] | 56.0940 | 9.870 | 5.683 | 0.000 | 35.506 76.682 |
expression | -14.1145 | 23.913 | -0.590 | 0.562 | -63.997 35.768 |
Omnibus: | 0.926 | Durbin-Watson: | 1.975 |
Prob(Omnibus): | 0.629 | Jarque-Bera (JB): | 0.844 |
Skew: | 0.238 | Prob(JB): | 0.656 |
Kurtosis: | 2.191 | Cond. No. | 592. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:03:51 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.098 |
Model: | OLS | Adj. R-squared: | 0.055 |
Method: | Least Squares | F-statistic: | 2.281 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.146 |
Time: | 23:03:51 | Log-Likelihood: | -111.92 |
No. Observations: | 23 | AIC: | 227.8 |
Df Residuals: | 21 | BIC: | 230.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -440.3933 | 344.478 | -1.278 | 0.215 | -1156.774 275.988 |
expression | 50.2053 | 33.245 | 1.510 | 0.146 | -18.932 119.342 |
Omnibus: | 0.868 | Durbin-Watson: | 2.095 |
Prob(Omnibus): | 0.648 | Jarque-Bera (JB): | 0.754 |
Skew: | 0.120 | Prob(JB): | 0.686 |
Kurtosis: | 2.146 | Cond. No. | 526. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.274 | 0.610 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.502 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 3.700 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0462 |
Time: | 23:03:51 | Log-Likelihood: | -70.067 |
No. Observations: | 15 | AIC: | 148.1 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 840.7965 | 712.186 | 1.181 | 0.263 | -726.713 2408.306 |
C(dose)[T.1] | -748.6165 | 835.317 | -0.896 | 0.389 | -2587.137 1089.904 |
expression | -76.4452 | 70.389 | -1.086 | 0.301 | -231.369 78.479 |
expression:C(dose)[T.1] | 78.8727 | 82.659 | 0.954 | 0.360 | -103.058 260.803 |
Omnibus: | 1.886 | Durbin-Watson: | 0.700 |
Prob(Omnibus): | 0.389 | Jarque-Bera (JB): | 1.252 |
Skew: | -0.686 | Prob(JB): | 0.535 |
Kurtosis: | 2.651 | Cond. No. | 1.60e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.371 |
Method: | Least Squares | F-statistic: | 5.134 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0245 |
Time: | 23:03:51 | Log-Likelihood: | -70.664 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 262.1823 | 372.104 | 0.705 | 0.495 | -548.562 1072.927 |
C(dose)[T.1] | 48.3001 | 15.657 | 3.085 | 0.009 | 14.187 82.413 |
expression | -19.2509 | 36.764 | -0.524 | 0.610 | -99.353 60.852 |
Omnibus: | 2.129 | Durbin-Watson: | 0.791 |
Prob(Omnibus): | 0.345 | Jarque-Bera (JB): | 1.314 |
Skew: | -0.715 | Prob(JB): | 0.518 |
Kurtosis: | 2.759 | Cond. No. | 489. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:03:51 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.041 |
Method: | Least Squares | F-statistic: | 0.4532 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.513 |
Time: | 23:03:51 | Log-Likelihood: | -75.043 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 413.0780 | 474.567 | 0.870 | 0.400 | -612.161 1438.317 |
expression | -31.6506 | 47.015 | -0.673 | 0.513 | -133.219 69.918 |
Omnibus: | 1.085 | Durbin-Watson: | 1.531 |
Prob(Omnibus): | 0.581 | Jarque-Bera (JB): | 0.830 |
Skew: | 0.278 | Prob(JB): | 0.660 |
Kurtosis: | 1.991 | Cond. No. | 484. |