AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.174 0.681 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.88
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000131
Time: 03:43:07 Log-Likelihood: -100.96
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.7383 66.072 1.207 0.242 -58.552 218.029
C(dose)[T.1] 43.5875 127.748 0.341 0.737 -223.792 310.968
expression -4.6893 12.083 -0.388 0.702 -29.978 20.600
expression:C(dose)[T.1] 1.8087 23.301 0.078 0.939 -46.960 50.577
Omnibus: 0.715 Durbin-Watson: 1.873
Prob(Omnibus): 0.699 Jarque-Bera (JB): 0.670
Skew: 0.019 Prob(JB): 0.715
Kurtosis: 2.165 Cond. No. 191.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.60e-05
Time: 03:43:07 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.0904 55.162 1.398 0.178 -37.975 192.156
C(dose)[T.1] 53.4797 8.739 6.120 0.000 35.251 71.708
expression -4.2029 10.071 -0.417 0.681 -25.211 16.805
Omnibus: 0.703 Durbin-Watson: 1.886
Prob(Omnibus): 0.704 Jarque-Bera (JB): 0.667
Skew: 0.031 Prob(JB): 0.717
Kurtosis: 2.168 Cond. No. 71.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:43:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01161
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.915
Time: 03:43:07 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.5104 91.179 0.982 0.337 -100.107 279.127
expression -1.7934 16.645 -0.108 0.915 -36.410 32.823
Omnibus: 3.208 Durbin-Watson: 2.492
Prob(Omnibus): 0.201 Jarque-Bera (JB): 1.552
Skew: 0.290 Prob(JB): 0.460
Kurtosis: 1.867 Cond. No. 71.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.875 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.476
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 3.330
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0601
Time: 03:43:07 Log-Likelihood: -70.454
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.5448 99.370 0.901 0.387 -129.167 308.257
C(dose)[T.1] -96.8679 198.876 -0.487 0.636 -534.591 340.855
expression -4.6984 20.963 -0.224 0.827 -50.838 41.441
expression:C(dose)[T.1] 31.5976 42.797 0.738 0.476 -62.597 125.792
Omnibus: 2.800 Durbin-Watson: 0.924
Prob(Omnibus): 0.247 Jarque-Bera (JB): 2.028
Skew: -0.866 Prob(JB): 0.363
Kurtosis: 2.504 Cond. No. 146.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.908
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 03:43:07 Log-Likelihood: -70.817
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.8573 85.160 0.632 0.539 -131.691 239.406
C(dose)[T.1] 49.4828 15.823 3.127 0.009 15.007 83.959
expression 2.8831 17.926 0.161 0.875 -36.175 41.941
Omnibus: 2.471 Durbin-Watson: 0.804
Prob(Omnibus): 0.291 Jarque-Bera (JB): 1.746
Skew: -0.806 Prob(JB): 0.418
Kurtosis: 2.557 Cond. No. 53.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:43:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.075
Method: Least Squares F-statistic: 0.02207
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.884
Time: 03:43:07 Log-Likelihood: -75.287
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.6084 107.785 1.017 0.328 -123.247 342.464
expression -3.4252 23.056 -0.149 0.884 -53.234 46.383
Omnibus: 0.424 Durbin-Watson: 1.644
Prob(Omnibus): 0.809 Jarque-Bera (JB): 0.510
Skew: 0.044 Prob(JB): 0.775
Kurtosis: 2.101 Cond. No. 51.9