AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.711 0.027 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.772
Model: OLS Adj. R-squared: 0.737
Method: Least Squares F-statistic: 21.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.51e-06
Time: 06:20:23 Log-Likelihood: -96.080
No. Observations: 23 AIC: 200.2
Df Residuals: 19 BIC: 204.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.8479 33.261 2.882 0.010 26.231 165.464
C(dose)[T.1] 184.3051 67.512 2.730 0.013 43.000 325.610
expression -10.4625 8.262 -1.266 0.221 -27.755 6.830
expression:C(dose)[T.1] -32.7841 16.829 -1.948 0.066 -68.008 2.439
Omnibus: 0.705 Durbin-Watson: 1.306
Prob(Omnibus): 0.703 Jarque-Bera (JB): 0.677
Skew: 0.087 Prob(JB): 0.713
Kurtosis: 2.178 Cond. No. 93.2

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.727
Model: OLS Adj. R-squared: 0.700
Method: Least Squares F-statistic: 26.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.30e-06
Time: 06:20:23 Log-Likelihood: -98.174
No. Observations: 23 AIC: 202.3
Df Residuals: 20 BIC: 205.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.2952 31.047 4.100 0.001 62.533 192.058
C(dose)[T.1] 53.5454 7.735 6.922 0.000 37.410 69.681
expression -18.3640 7.684 -2.390 0.027 -34.393 -2.335
Omnibus: 0.706 Durbin-Watson: 1.950
Prob(Omnibus): 0.703 Jarque-Bera (JB): 0.666
Skew: 0.015 Prob(JB): 0.717
Kurtosis: 2.167 Cond. No. 34.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:20:23 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.073
Model: OLS Adj. R-squared: 0.029
Method: Least Squares F-statistic: 1.653
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.213
Time: 06:20:23 Log-Likelihood: -112.23
No. Observations: 23 AIC: 228.5
Df Residuals: 21 BIC: 230.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.5149 55.507 2.712 0.013 35.081 265.949
expression -17.7646 13.818 -1.286 0.213 -46.501 10.972
Omnibus: 4.839 Durbin-Watson: 2.383
Prob(Omnibus): 0.089 Jarque-Bera (JB): 1.646
Skew: 0.144 Prob(JB): 0.439
Kurtosis: 1.721 Cond. No. 34.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.194 0.668 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.462
Model: OLS Adj. R-squared: 0.315
Method: Least Squares F-statistic: 3.149
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0687
Time: 06:20:23 Log-Likelihood: -70.651
No. Observations: 15 AIC: 149.3
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.9872 231.403 0.147 0.886 -475.327 543.301
C(dose)[T.1] -57.6892 364.203 -0.158 0.877 -859.294 743.915
expression 9.3801 64.822 0.145 0.888 -133.292 152.053
expression:C(dose)[T.1] 31.5271 104.466 0.302 0.768 -198.400 261.455
Omnibus: 1.359 Durbin-Watson: 0.965
Prob(Omnibus): 0.507 Jarque-Bera (JB): 1.095
Skew: -0.582 Prob(JB): 0.578
Kurtosis: 2.370 Cond. No. 215.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 5.061
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0255
Time: 06:20:23 Log-Likelihood: -70.713
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.2899 174.601 -0.053 0.958 -389.713 371.134
C(dose)[T.1] 52.0963 16.946 3.074 0.010 15.174 89.018
expression 21.5192 48.870 0.440 0.668 -84.960 127.998
Omnibus: 1.890 Durbin-Watson: 0.930
Prob(Omnibus): 0.389 Jarque-Bera (JB): 1.394
Skew: -0.700 Prob(JB): 0.498
Kurtosis: 2.481 Cond. No. 85.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:20:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.030
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.4062
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.535
Time: 06:20:23 Log-Likelihood: -75.069
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 222.4518 202.305 1.100 0.291 -214.602 659.505
expression -36.8668 57.842 -0.637 0.535 -161.827 88.094
Omnibus: 1.101 Durbin-Watson: 1.408
Prob(Omnibus): 0.577 Jarque-Bera (JB): 0.743
Skew: -0.076 Prob(JB): 0.690
Kurtosis: 1.920 Cond. No. 76.5