AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.969 0.176 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.692
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 14.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.28e-05
Time: 04:46:07 Log-Likelihood: -99.572
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.2865 73.885 0.532 0.601 -115.357 193.930
C(dose)[T.1] -26.4617 94.663 -0.280 0.783 -224.594 171.671
expression 3.5386 17.467 0.203 0.842 -33.020 40.097
expression:C(dose)[T.1] 18.4415 22.174 0.832 0.416 -27.969 64.852
Omnibus: 1.566 Durbin-Watson: 1.571
Prob(Omnibus): 0.457 Jarque-Bera (JB): 1.155
Skew: 0.308 Prob(JB): 0.561
Kurtosis: 2.091 Cond. No. 139.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.649
Method: Least Squares F-statistic: 21.30
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.11e-05
Time: 04:46:07 Log-Likelihood: -99.983
No. Observations: 23 AIC: 206.0
Df Residuals: 20 BIC: 209.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.9674 45.393 -0.198 0.845 -103.655 85.720
C(dose)[T.1] 51.9507 8.426 6.166 0.000 34.375 69.527
expression 14.9818 10.677 1.403 0.176 -7.290 37.253
Omnibus: 1.011 Durbin-Watson: 1.438
Prob(Omnibus): 0.603 Jarque-Bera (JB): 0.843
Skew: 0.186 Prob(JB): 0.656
Kurtosis: 2.139 Cond. No. 49.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.073
Model: OLS Adj. R-squared: 0.029
Method: Least Squares F-statistic: 1.659
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.212
Time: 04:46:07 Log-Likelihood: -112.23
No. Observations: 23 AIC: 228.5
Df Residuals: 21 BIC: 230.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.0138 75.417 -0.226 0.824 -173.852 139.825
expression 22.7011 17.624 1.288 0.212 -13.950 59.352
Omnibus: 1.952 Durbin-Watson: 2.203
Prob(Omnibus): 0.377 Jarque-Bera (JB): 1.142
Skew: 0.193 Prob(JB): 0.565
Kurtosis: 1.979 Cond. No. 49.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.138 0.716 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.311
Method: Least Squares F-statistic: 3.111
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0707
Time: 04:46:07 Log-Likelihood: -70.693
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.1173 55.097 0.801 0.440 -77.150 165.385
C(dose)[T.1] 92.9002 154.791 0.600 0.561 -247.793 433.594
expression 5.0647 11.688 0.433 0.673 -20.661 30.791
expression:C(dose)[T.1] -9.5309 33.680 -0.283 0.782 -83.660 64.598
Omnibus: 3.038 Durbin-Watson: 0.841
Prob(Omnibus): 0.219 Jarque-Bera (JB): 2.005
Skew: -0.885 Prob(JB): 0.367
Kurtosis: 2.723 Cond. No. 108.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.010
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0262
Time: 04:46:07 Log-Likelihood: -70.747
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.4007 49.811 0.992 0.341 -59.127 157.929
C(dose)[T.1] 49.3399 15.654 3.152 0.008 15.232 83.448
expression 3.9168 10.533 0.372 0.716 -19.033 26.867
Omnibus: 2.724 Durbin-Watson: 0.871
Prob(Omnibus): 0.256 Jarque-Bera (JB): 1.866
Skew: -0.844 Prob(JB): 0.393
Kurtosis: 2.630 Cond. No. 31.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.05131
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.824
Time: 04:46:07 Log-Likelihood: -75.271
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.4664 63.503 1.251 0.233 -57.724 216.656
expression 3.0984 13.678 0.227 0.824 -26.451 32.648
Omnibus: 0.563 Durbin-Watson: 1.680
Prob(Omnibus): 0.755 Jarque-Bera (JB): 0.569
Skew: 0.071 Prob(JB): 0.753
Kurtosis: 2.057 Cond. No. 30.4