AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.081 0.779 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000104
Time: 23:03:51 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.1381 37.671 2.207 0.040 4.291 161.985
C(dose)[T.1] 17.5975 48.419 0.363 0.720 -83.744 118.939
expression -7.4176 9.531 -0.778 0.446 -27.366 12.530
expression:C(dose)[T.1] 9.0462 11.892 0.761 0.456 -15.844 33.937
Omnibus: 0.663 Durbin-Watson: 1.971
Prob(Omnibus): 0.718 Jarque-Bera (JB): 0.656
Skew: 0.074 Prob(JB): 0.720
Kurtosis: 2.186 Cond. No. 65.9

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.61
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.72e-05
Time: 23:03:51 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.4769 22.814 2.651 0.015 12.888 108.066
C(dose)[T.1] 53.7887 8.894 6.047 0.000 35.235 72.342
expression -1.6073 5.640 -0.285 0.779 -13.372 10.157
Omnibus: 0.333 Durbin-Watson: 1.910
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.489
Skew: -0.002 Prob(JB): 0.783
Kurtosis: 2.285 Cond. No. 22.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:03:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2408
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.629
Time: 23:03:51 Log-Likelihood: -112.97
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.6840 37.443 1.647 0.114 -16.184 139.552
expression 4.4697 9.109 0.491 0.629 -14.473 23.412
Omnibus: 1.979 Durbin-Watson: 2.466
Prob(Omnibus): 0.372 Jarque-Bera (JB): 1.259
Skew: 0.290 Prob(JB): 0.533
Kurtosis: 2.011 Cond. No. 22.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.624 0.445 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.633
Model: OLS Adj. R-squared: 0.533
Method: Least Squares F-statistic: 6.330
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00942
Time: 23:03:52 Log-Likelihood: -67.778
No. Observations: 15 AIC: 143.6
Df Residuals: 11 BIC: 146.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 130.3922 33.790 3.859 0.003 56.021 204.763
C(dose)[T.1] -73.3814 57.157 -1.284 0.226 -199.184 52.421
expression -13.1023 6.730 -1.947 0.078 -27.914 1.710
expression:C(dose)[T.1] 26.6362 12.268 2.171 0.053 -0.365 53.637
Omnibus: 3.425 Durbin-Watson: 1.572
Prob(Omnibus): 0.180 Jarque-Bera (JB): 1.233
Skew: -0.552 Prob(JB): 0.540
Kurtosis: 3.867 Cond. No. 51.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.476
Model: OLS Adj. R-squared: 0.389
Method: Least Squares F-statistic: 5.451
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0207
Time: 23:03:52 Log-Likelihood: -70.453
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.8730 32.909 2.792 0.016 20.170 163.576
C(dose)[T.1] 47.1581 15.561 3.031 0.010 13.253 81.063
expression -5.0867 6.439 -0.790 0.445 -19.116 8.942
Omnibus: 2.575 Durbin-Watson: 1.051
Prob(Omnibus): 0.276 Jarque-Bera (JB): 1.584
Skew: -0.790 Prob(JB): 0.453
Kurtosis: 2.802 Cond. No. 21.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:03:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.075
Model: OLS Adj. R-squared: 0.004
Method: Least Squares F-statistic: 1.054
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.323
Time: 23:03:52 Log-Likelihood: -74.715
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 131.8807 38.482 3.427 0.005 48.746 215.015
expression -8.3222 8.106 -1.027 0.323 -25.834 9.189
Omnibus: 3.478 Durbin-Watson: 1.655
Prob(Omnibus): 0.176 Jarque-Bera (JB): 1.706
Skew: 0.525 Prob(JB): 0.426
Kurtosis: 1.724 Cond. No. 19.5