AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.007 | 0.935 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.613 |
Method: | Least Squares | F-statistic: | 12.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.16e-05 |
Time: | 05:06:38 | Log-Likelihood: | -100.51 |
No. Observations: | 23 | AIC: | 209.0 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.9377 | 108.562 | -0.322 | 0.751 | -262.161 192.286 |
C(dose)[T.1] | 166.0282 | 118.372 | 1.403 | 0.177 | -81.728 413.784 |
expression | 15.0894 | 18.347 | 0.822 | 0.421 | -23.312 53.490 |
expression:C(dose)[T.1] | -19.7117 | 20.515 | -0.961 | 0.349 | -62.650 23.227 |
Omnibus: | 0.067 | Durbin-Watson: | 1.993 |
Prob(Omnibus): | 0.967 | Jarque-Bera (JB): | 0.264 |
Skew: | -0.086 | Prob(JB): | 0.876 |
Kurtosis: | 2.503 | Cond. No. | 226. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.82e-05 |
Time: | 05:06:38 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.2049 | 48.781 | 1.193 | 0.247 | -43.550 159.960 |
C(dose)[T.1] | 52.7864 | 11.017 | 4.792 | 0.000 | 29.806 75.766 |
expression | -0.6765 | 8.193 | -0.083 | 0.935 | -17.767 16.414 |
Omnibus: | 0.238 | Durbin-Watson: | 1.885 |
Prob(Omnibus): | 0.888 | Jarque-Bera (JB): | 0.432 |
Skew: | 0.043 | Prob(JB): | 0.806 |
Kurtosis: | 2.334 | Cond. No. | 64.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:06:38 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.246 |
Model: | OLS | Adj. R-squared: | 0.211 |
Method: | Least Squares | F-statistic: | 6.868 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0160 |
Time: | 05:06:38 | Log-Likelihood: | -109.85 |
No. Observations: | 23 | AIC: | 223.7 |
Df Residuals: | 21 | BIC: | 226.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 214.6028 | 51.850 | 4.139 | 0.000 | 106.775 322.431 |
expression | -24.4422 | 9.327 | -2.621 | 0.016 | -43.838 -5.046 |
Omnibus: | 0.485 | Durbin-Watson: | 2.068 |
Prob(Omnibus): | 0.785 | Jarque-Bera (JB): | 0.583 |
Skew: | 0.118 | Prob(JB): | 0.747 |
Kurtosis: | 2.257 | Cond. No. | 47.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.917 | 0.191 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.568 |
Model: | OLS | Adj. R-squared: | 0.450 |
Method: | Least Squares | F-statistic: | 4.825 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0221 |
Time: | 05:06:38 | Log-Likelihood: | -69.001 |
No. Observations: | 15 | AIC: | 146.0 |
Df Residuals: | 11 | BIC: | 148.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 362.6170 | 170.721 | 2.124 | 0.057 | -13.138 738.372 |
C(dose)[T.1] | -208.7801 | 249.369 | -0.837 | 0.420 | -757.637 340.077 |
expression | -48.8888 | 28.220 | -1.732 | 0.111 | -111.000 13.223 |
expression:C(dose)[T.1] | 42.8730 | 40.709 | 1.053 | 0.315 | -46.728 132.474 |
Omnibus: | 5.239 | Durbin-Watson: | 1.375 |
Prob(Omnibus): | 0.073 | Jarque-Bera (JB): | 2.652 |
Skew: | -0.974 | Prob(JB): | 0.265 |
Kurtosis: | 3.672 | Cond. No. | 285. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.525 |
Model: | OLS | Adj. R-squared: | 0.445 |
Method: | Least Squares | F-statistic: | 6.623 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0115 |
Time: | 05:06:38 | Log-Likelihood: | -69.722 |
No. Observations: | 15 | AIC: | 145.4 |
Df Residuals: | 12 | BIC: | 147.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 238.2241 | 123.825 | 1.924 | 0.078 | -31.568 508.017 |
C(dose)[T.1] | 53.3758 | 14.924 | 3.576 | 0.004 | 20.859 85.893 |
expression | -28.2870 | 20.432 | -1.384 | 0.191 | -72.803 16.229 |
Omnibus: | 8.795 | Durbin-Watson: | 1.094 |
Prob(Omnibus): | 0.012 | Jarque-Bera (JB): | 5.145 |
Skew: | -1.242 | Prob(JB): | 0.0763 |
Kurtosis: | 4.438 | Cond. No. | 107. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:06:38 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.057 |
Method: | Least Squares | F-statistic: | 0.2389 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.633 |
Time: | 05:06:38 | Log-Likelihood: | -75.163 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 176.2805 | 169.316 | 1.041 | 0.317 | -189.504 542.065 |
expression | -13.5062 | 27.632 | -0.489 | 0.633 | -73.201 46.188 |
Omnibus: | 1.622 | Durbin-Watson: | 1.781 |
Prob(Omnibus): | 0.444 | Jarque-Bera (JB): | 0.908 |
Skew: | 0.167 | Prob(JB): | 0.635 |
Kurtosis: | 1.842 | Cond. No. | 106. |