AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.014 | 0.908 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 12.79 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 8.36e-05 |
Time: | 17:59:35 | Log-Likelihood: | -100.40 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 99.4582 | 55.790 | 1.783 | 0.091 | -17.312 216.228 |
C(dose)[T.1] | -39.2481 | 89.374 | -0.439 | 0.666 | -226.309 147.813 |
expression | -10.5862 | 12.975 | -0.816 | 0.425 | -37.744 16.571 |
expression:C(dose)[T.1] | 19.7844 | 18.733 | 1.056 | 0.304 | -19.425 58.994 |
Omnibus: | 0.404 | Durbin-Watson: | 1.916 |
Prob(Omnibus): | 0.817 | Jarque-Bera (JB): | 0.534 |
Skew: | 0.087 | Prob(JB): | 0.766 |
Kurtosis: | 2.274 | Cond. No. | 130. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.81e-05 |
Time: | 17:59:35 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.8884 | 40.575 | 1.451 | 0.162 | -25.749 143.526 |
C(dose)[T.1] | 54.2916 | 11.992 | 4.527 | 0.000 | 29.278 79.306 |
expression | -1.0949 | 9.386 | -0.117 | 0.908 | -20.674 18.484 |
Omnibus: | 0.329 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.848 | Jarque-Bera (JB): | 0.489 |
Skew: | 0.061 | Prob(JB): | 0.783 |
Kurtosis: | 2.296 | Cond. No. | 47.0 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 17:59:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.290 |
Model: | OLS | Adj. R-squared: | 0.256 |
Method: | Least Squares | F-statistic: | 8.572 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00804 |
Time: | 17:59:35 | Log-Likelihood: | -109.17 |
No. Observations: | 23 | AIC: | 222.3 |
Df Residuals: | 21 | BIC: | 224.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -51.1636 | 45.116 | -1.134 | 0.270 | -144.987 42.660 |
expression | 27.8985 | 9.529 | 2.928 | 0.008 | 8.082 47.715 |
Omnibus: | 0.841 | Durbin-Watson: | 2.160 |
Prob(Omnibus): | 0.657 | Jarque-Bera (JB): | 0.727 |
Skew: | 0.067 | Prob(JB): | 0.695 |
Kurtosis: | 2.140 | Cond. No. | 36.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.102 | 0.314 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.568 |
Model: | OLS | Adj. R-squared: | 0.451 |
Method: | Least Squares | F-statistic: | 4.830 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0221 |
Time: | 17:59:35 | Log-Likelihood: | -68.997 |
No. Observations: | 15 | AIC: | 146.0 |
Df Residuals: | 11 | BIC: | 148.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.5267 | 58.351 | 1.157 | 0.272 | -60.904 195.957 |
C(dose)[T.1] | -108.0986 | 107.719 | -1.004 | 0.337 | -345.187 128.990 |
expression | -0.0246 | 14.376 | -0.002 | 0.999 | -31.667 31.618 |
expression:C(dose)[T.1] | 31.5291 | 23.066 | 1.367 | 0.199 | -19.238 82.296 |
Omnibus: | 1.653 | Durbin-Watson: | 0.942 |
Prob(Omnibus): | 0.438 | Jarque-Bera (JB): | 1.309 |
Skew: | -0.641 | Prob(JB): | 0.520 |
Kurtosis: | 2.328 | Cond. No. | 91.2 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.495 |
Model: | OLS | Adj. R-squared: | 0.411 |
Method: | Least Squares | F-statistic: | 5.885 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0166 |
Time: | 17:59:35 | Log-Likelihood: | -70.174 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 12 | BIC: | 148.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.6425 | 47.748 | 0.390 | 0.703 | -85.391 122.676 |
C(dose)[T.1] | 36.9888 | 19.028 | 1.944 | 0.076 | -4.470 78.447 |
expression | 12.2240 | 11.642 | 1.050 | 0.314 | -13.142 37.590 |
Omnibus: | 2.636 | Durbin-Watson: | 1.188 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 2.008 |
Skew: | -0.824 | Prob(JB): | 0.366 |
Kurtosis: | 2.296 | Cond. No. | 31.5 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 17:59:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.336 |
Model: | OLS | Adj. R-squared: | 0.285 |
Method: | Least Squares | F-statistic: | 6.584 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0235 |
Time: | 17:59:35 | Log-Likelihood: | -72.227 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 13 | BIC: | 149.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.1824 | 46.670 | -0.518 | 0.613 | -125.007 76.642 |
expression | 26.0520 | 10.153 | 2.566 | 0.023 | 4.117 47.987 |
Omnibus: | 1.347 | Durbin-Watson: | 1.784 |
Prob(Omnibus): | 0.510 | Jarque-Bera (JB): | 1.050 |
Skew: | -0.585 | Prob(JB): | 0.592 |
Kurtosis: | 2.441 | Cond. No. | 27.1 |