AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.189 0.668 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000129
Time: 05:13:45 Log-Likelihood: -100.94
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.8857 184.649 0.194 0.848 -350.590 422.361
C(dose)[T.1] 19.7449 219.115 0.090 0.929 -438.868 478.357
expression 2.4366 24.542 0.099 0.922 -48.930 53.803
expression:C(dose)[T.1] 4.5149 29.173 0.155 0.879 -56.545 65.575
Omnibus: 0.367 Durbin-Watson: 1.873
Prob(Omnibus): 0.832 Jarque-Bera (JB): 0.509
Skew: 0.041 Prob(JB): 0.775
Kurtosis: 2.276 Cond. No. 532.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.76
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.58e-05
Time: 05:13:45 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.8588 97.496 0.122 0.904 -191.514 215.231
C(dose)[T.1] 53.6275 8.754 6.126 0.000 35.367 71.888
expression 5.6318 12.941 0.435 0.668 -21.362 32.625
Omnibus: 0.464 Durbin-Watson: 1.875
Prob(Omnibus): 0.793 Jarque-Bera (JB): 0.560
Skew: 0.041 Prob(JB): 0.756
Kurtosis: 2.240 Cond. No. 171.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:13:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0003696
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.985
Time: 05:13:45 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.7946 160.225 0.517 0.611 -250.412 416.001
expression -0.4106 21.356 -0.019 0.985 -44.823 44.001
Omnibus: 3.289 Durbin-Watson: 2.487
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.568
Skew: 0.290 Prob(JB): 0.456
Kurtosis: 1.860 Cond. No. 170.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.461 0.250 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.511
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 3.832
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0422
Time: 05:13:45 Log-Likelihood: -69.934
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 274.0770 284.043 0.965 0.355 -351.097 899.251
C(dose)[T.1] 148.8064 434.134 0.343 0.738 -806.717 1104.330
expression -24.9961 34.330 -0.728 0.482 -100.557 50.565
expression:C(dose)[T.1] -12.4167 52.778 -0.235 0.818 -128.581 103.747
Omnibus: 3.182 Durbin-Watson: 0.764
Prob(Omnibus): 0.204 Jarque-Bera (JB): 2.007
Skew: -0.891 Prob(JB): 0.367
Kurtosis: 2.821 Cond. No. 603.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.427
Method: Least Squares F-statistic: 6.210
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0141
Time: 05:13:45 Log-Likelihood: -69.971
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 317.5098 207.195 1.532 0.151 -133.929 768.948
C(dose)[T.1] 46.7368 15.000 3.116 0.009 14.055 79.418
expression -30.2497 25.028 -1.209 0.250 -84.781 24.281
Omnibus: 3.299 Durbin-Watson: 0.755
Prob(Omnibus): 0.192 Jarque-Bera (JB): 2.120
Skew: -0.915 Prob(JB): 0.347
Kurtosis: 2.798 Cond. No. 234.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:13:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.043
Method: Least Squares F-statistic: 1.624
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.225
Time: 05:13:45 Log-Likelihood: -74.417
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 429.4449 263.690 1.629 0.127 -140.222 999.112
expression -40.8297 32.043 -1.274 0.225 -110.054 28.395
Omnibus: 0.414 Durbin-Watson: 1.875
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.506
Skew: 0.061 Prob(JB): 0.776
Kurtosis: 2.108 Cond. No. 230.