AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.398 0.535 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.15e-05
Time: 04:46:27 Log-Likelihood: -100.21
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 9.9443 39.881 0.249 0.806 -73.527 93.416
C(dose)[T.1] 123.4526 69.401 1.779 0.091 -21.806 268.711
expression 9.0912 8.098 1.123 0.276 -7.858 26.040
expression:C(dose)[T.1] -14.1218 13.648 -1.035 0.314 -42.687 14.443
Omnibus: 0.490 Durbin-Watson: 1.929
Prob(Omnibus): 0.783 Jarque-Bera (JB): 0.489
Skew: -0.299 Prob(JB): 0.783
Kurtosis: 2.608 Cond. No. 102.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.06
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.33e-05
Time: 04:46:27 Log-Likelihood: -100.84
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.1519 32.355 1.056 0.304 -33.340 101.643
C(dose)[T.1] 52.2251 8.861 5.894 0.000 33.741 70.709
expression 4.1193 6.530 0.631 0.535 -9.502 17.740
Omnibus: 1.696 Durbin-Watson: 1.951
Prob(Omnibus): 0.428 Jarque-Bera (JB): 0.996
Skew: 0.065 Prob(JB): 0.608
Kurtosis: 1.989 Cond. No. 39.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.058
Model: OLS Adj. R-squared: 0.013
Method: Least Squares F-statistic: 1.299
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.267
Time: 04:46:27 Log-Likelihood: -112.41
No. Observations: 23 AIC: 228.8
Df Residuals: 21 BIC: 231.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.8648 52.110 0.400 0.693 -87.503 129.233
expression 11.7753 10.332 1.140 0.267 -9.710 33.261
Omnibus: 1.870 Durbin-Watson: 2.368
Prob(Omnibus): 0.393 Jarque-Bera (JB): 1.426
Skew: 0.421 Prob(JB): 0.490
Kurtosis: 2.118 Cond. No. 39.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.322 0.273 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.516
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 3.902
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0402
Time: 04:46:27 Log-Likelihood: -69.865
No. Observations: 15 AIC: 147.7
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.1630 76.992 0.288 0.779 -147.295 191.621
C(dose)[T.1] -25.2600 135.544 -0.186 0.856 -323.590 273.071
expression 8.6621 14.575 0.594 0.564 -23.417 40.741
expression:C(dose)[T.1] 12.9807 24.809 0.523 0.611 -41.624 67.585
Omnibus: 0.926 Durbin-Watson: 0.757
Prob(Omnibus): 0.629 Jarque-Bera (JB): 0.836
Skew: -0.462 Prob(JB): 0.658
Kurtosis: 2.304 Cond. No. 123.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.503
Model: OLS Adj. R-squared: 0.421
Method: Least Squares F-statistic: 6.084
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0150
Time: 04:46:27 Log-Likelihood: -70.049
No. Observations: 15 AIC: 146.1
Df Residuals: 12 BIC: 148.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1.2491 60.729 -0.021 0.984 -133.566 131.068
C(dose)[T.1] 45.1747 15.343 2.944 0.012 11.746 78.604
expression 13.1423 11.432 1.150 0.273 -11.766 38.051
Omnibus: 1.199 Durbin-Watson: 0.862
Prob(Omnibus): 0.549 Jarque-Bera (JB): 0.981
Skew: -0.547 Prob(JB): 0.612
Kurtosis: 2.388 Cond. No. 46.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.145
Model: OLS Adj. R-squared: 0.079
Method: Least Squares F-statistic: 2.200
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.162
Time: 04:46:27 Log-Likelihood: -74.128
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -18.5163 76.217 -0.243 0.812 -183.173 146.141
expression 20.8173 14.035 1.483 0.162 -9.504 51.139
Omnibus: 1.558 Durbin-Watson: 1.421
Prob(Omnibus): 0.459 Jarque-Bera (JB): 0.903
Skew: 0.187 Prob(JB): 0.637
Kurtosis: 1.858 Cond. No. 45.5