AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.973 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.71
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000143
Time: 03:35:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 56.1963 54.263 1.036 0.313 -57.377 169.769
C(dose)[T.1] 51.8881 78.130 0.664 0.515 -111.640 215.416
expression -0.3786 10.266 -0.037 0.971 -21.866 21.109
expression:C(dose)[T.1] 0.2697 15.258 0.018 0.986 -31.665 32.204
Omnibus: 0.294 Durbin-Watson: 1.884
Prob(Omnibus): 0.863 Jarque-Bera (JB): 0.468
Skew: 0.056 Prob(JB): 0.791
Kurtosis: 2.310 Cond. No. 118.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 03:35:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 55.5552 39.338 1.412 0.173 -26.503 137.613
C(dose)[T.1] 53.2592 9.053 5.883 0.000 34.374 72.144
expression -0.2565 7.402 -0.035 0.973 -15.698 15.185
Omnibus: 0.279 Durbin-Watson: 1.882
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.459
Skew: 0.053 Prob(JB): 0.795
Kurtosis: 2.316 Cond. No. 48.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:35:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.042
Model: OLS Adj. R-squared: -0.004
Method: Least Squares F-statistic: 0.9176
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.349
Time: 03:35:16 Log-Likelihood: -112.61
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.2640 59.452 2.292 0.032 12.627 259.901
expression -11.0759 11.562 -0.958 0.349 -35.121 12.969
Omnibus: 3.757 Durbin-Watson: 2.384
Prob(Omnibus): 0.153 Jarque-Bera (JB): 1.525
Skew: 0.195 Prob(JB): 0.466
Kurtosis: 1.800 Cond. No. 44.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.384 0.547 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.518
Model: OLS Adj. R-squared: 0.387
Method: Least Squares F-statistic: 3.946
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0390
Time: 03:35:16 Log-Likelihood: -69.821
No. Observations: 15 AIC: 147.6
Df Residuals: 11 BIC: 150.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.8735 50.990 1.312 0.216 -45.354 179.101
C(dose)[T.1] 146.3604 92.648 1.580 0.142 -57.556 350.277
expression 0.0991 8.878 0.011 0.991 -19.441 19.639
expression:C(dose)[T.1] -19.3249 17.647 -1.095 0.297 -58.166 19.516
Omnibus: 8.892 Durbin-Watson: 0.919
Prob(Omnibus): 0.012 Jarque-Bera (JB): 5.358
Skew: -1.346 Prob(JB): 0.0686
Kurtosis: 4.149 Cond. No. 80.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 5.233
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0232
Time: 03:35:16 Log-Likelihood: -70.597
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 94.2746 44.795 2.105 0.057 -3.326 191.875
C(dose)[T.1] 46.4279 16.126 2.879 0.014 11.293 81.563
expression -4.7916 7.736 -0.619 0.547 -21.647 12.064
Omnibus: 3.065 Durbin-Watson: 0.811
Prob(Omnibus): 0.216 Jarque-Bera (JB): 1.994
Skew: -0.884 Prob(JB): 0.369
Kurtosis: 2.753 Cond. No. 32.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:35:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.097
Model: OLS Adj. R-squared: 0.027
Method: Least Squares F-statistic: 1.394
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.259
Time: 03:35:16 Log-Likelihood: -74.536
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 151.7230 50.103 3.028 0.010 43.481 259.965
expression -10.9652 9.286 -1.181 0.259 -31.026 9.095
Omnibus: 2.391 Durbin-Watson: 1.352
Prob(Omnibus): 0.303 Jarque-Bera (JB): 1.095
Skew: -0.209 Prob(JB): 0.579
Kurtosis: 1.744 Cond. No. 28.9