AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.566 | 0.125 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.692 |
Model: | OLS | Adj. R-squared: | 0.644 |
Method: | Least Squares | F-statistic: | 14.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.19e-05 |
Time: | 05:02:53 | Log-Likelihood: | -99.546 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 19 | BIC: | 211.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -127.3022 | 177.246 | -0.718 | 0.481 | -498.283 243.679 |
C(dose)[T.1] | -102.0544 | 318.043 | -0.321 | 0.752 | -767.726 563.617 |
expression | 22.5774 | 22.035 | 1.025 | 0.318 | -23.543 68.697 |
expression:C(dose)[T.1] | 17.8204 | 38.570 | 0.462 | 0.649 | -62.909 98.549 |
Omnibus: | 0.610 | Durbin-Watson: | 1.558 |
Prob(Omnibus): | 0.737 | Jarque-Bera (JB): | 0.651 |
Skew: | 0.138 | Prob(JB): | 0.722 |
Kurtosis: | 2.224 | Cond. No. | 759. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.689 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 22.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.48e-06 |
Time: | 05:02:53 | Log-Likelihood: | -99.675 |
No. Observations: | 23 | AIC: | 205.3 |
Df Residuals: | 20 | BIC: | 208.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -174.0611 | 142.622 | -1.220 | 0.236 | -471.566 123.444 |
C(dose)[T.1] | 44.8151 | 9.822 | 4.563 | 0.000 | 24.327 65.303 |
expression | 28.3936 | 17.726 | 1.602 | 0.125 | -8.582 65.369 |
Omnibus: | 0.804 | Durbin-Watson: | 1.566 |
Prob(Omnibus): | 0.669 | Jarque-Bera (JB): | 0.716 |
Skew: | 0.083 | Prob(JB): | 0.699 |
Kurtosis: | 2.151 | Cond. No. | 288. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:02:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.365 |
Model: | OLS | Adj. R-squared: | 0.335 |
Method: | Least Squares | F-statistic: | 12.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00226 |
Time: | 05:02:53 | Log-Likelihood: | -107.88 |
No. Observations: | 23 | AIC: | 219.8 |
Df Residuals: | 21 | BIC: | 222.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -511.1271 | 170.089 | -3.005 | 0.007 | -864.847 -157.407 |
expression | 72.2037 | 20.774 | 3.476 | 0.002 | 29.002 115.405 |
Omnibus: | 0.130 | Durbin-Watson: | 2.363 |
Prob(Omnibus): | 0.937 | Jarque-Bera (JB): | 0.316 |
Skew: | 0.130 | Prob(JB): | 0.854 |
Kurtosis: | 2.488 | Cond. No. | 246. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.509 | 0.037 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.623 |
Model: | OLS | Adj. R-squared: | 0.520 |
Method: | Least Squares | F-statistic: | 6.051 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0109 |
Time: | 05:02:53 | Log-Likelihood: | -67.990 |
No. Observations: | 15 | AIC: | 144.0 |
Df Residuals: | 11 | BIC: | 146.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 355.6054 | 175.359 | 2.028 | 0.067 | -30.357 741.568 |
C(dose)[T.1] | 17.7185 | 242.374 | 0.073 | 0.943 | -515.742 551.179 |
expression | -40.6530 | 24.698 | -1.646 | 0.128 | -95.013 13.707 |
expression:C(dose)[T.1] | 4.0970 | 34.292 | 0.119 | 0.907 | -71.380 79.574 |
Omnibus: | 0.602 | Durbin-Watson: | 1.350 |
Prob(Omnibus): | 0.740 | Jarque-Bera (JB): | 0.579 |
Skew: | -0.017 | Prob(JB): | 0.749 |
Kurtosis: | 2.038 | Cond. No. | 345. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.622 |
Model: | OLS | Adj. R-squared: | 0.559 |
Method: | Least Squares | F-statistic: | 9.882 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00291 |
Time: | 05:02:53 | Log-Likelihood: | -68.000 |
No. Observations: | 15 | AIC: | 142.0 |
Df Residuals: | 12 | BIC: | 144.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 340.5404 | 116.752 | 2.917 | 0.013 | 86.160 594.921 |
C(dose)[T.1] | 46.6299 | 13.076 | 3.566 | 0.004 | 18.139 75.121 |
expression | -38.5278 | 16.415 | -2.347 | 0.037 | -74.294 -2.762 |
Omnibus: | 0.726 | Durbin-Watson: | 1.321 |
Prob(Omnibus): | 0.696 | Jarque-Bera (JB): | 0.622 |
Skew: | 0.023 | Prob(JB): | 0.733 |
Kurtosis: | 2.003 | Cond. No. | 130. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:02:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.222 |
Model: | OLS | Adj. R-squared: | 0.162 |
Method: | Least Squares | F-statistic: | 3.706 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0764 |
Time: | 05:02:53 | Log-Likelihood: | -73.419 |
No. Observations: | 15 | AIC: | 150.8 |
Df Residuals: | 13 | BIC: | 152.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 399.9363 | 159.338 | 2.510 | 0.026 | 55.707 744.166 |
expression | -43.4230 | 22.555 | -1.925 | 0.076 | -92.151 5.305 |
Omnibus: | 1.841 | Durbin-Watson: | 1.648 |
Prob(Omnibus): | 0.398 | Jarque-Bera (JB): | 1.452 |
Skew: | 0.652 | Prob(JB): | 0.484 |
Kurtosis: | 2.213 | Cond. No. | 128. |